Skip to main content
Top
Gepubliceerd in:

23-11-2017 | Original Article

A novel dissociation between representational momentum and representational gravity through response modality

Auteurs: Nuno Alexandre De Sá Teixeira, Dirk Kerzel, Heiko Hecht, Francesco Lacquaniti

Gepubliceerd in: Psychological Research | Uitgave 6/2019

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

When people are required to indicate the vanishing location of a moving object, systematic biases forward, in the direction of motion, and downward, in the direction of gravity, are usually found. Both these displacements, called representational momentum and representational gravity, respectively, are thought to reflect anticipatory internal mechanisms aiming to overcome neural delays in the perception of motion. We challenge this view. There may not be such a single mechanism. Although both representational momentum and representational gravity follow a specific time-course, compatible with an anticipation of the object’s dynamics, they do not seem to be commensurable with each other, as they are differentially modulated by relevant variables, such as eye movements and strength of motion signals. We found separate response components, one related to overt motor localization behaviour and one limited to purely perceptual judgement. Representational momentum emerged only for the motor localization task, revealing a motor overshoot. In contrast, representational gravity was mostly evident for spatial perceptual judgements. We interpret the results in support of a partial dissociation in the mechanisms that give rise to representational momentum and representational gravity, with the former but not the latter strongly modulated by the enrolment of the motor system.
Literatuur
go back to reference Amorim, M.-A., Siegler, I. A., Baurès, R., & Oliveira, A. M. (2015). The embodied dynamics of perceptual causality: A slippery slope? Frontiers of Psychology, 6, article 483. Amorim, M.-A., Siegler, I. A., Baurès, R., & Oliveira, A. M. (2015). The embodied dynamics of perceptual causality: A slippery slope? Frontiers of Psychology, 6, article 483.
go back to reference Ashida, H. (2004). Action-specific extrapolation of target motion in human visual system. Neuropsychologia, 42, 1515–1524.CrossRefPubMed Ashida, H. (2004). Action-specific extrapolation of target motion in human visual system. Neuropsychologia, 42, 1515–1524.CrossRefPubMed
go back to reference Bertamini, M. (1993). Memory for position and dynamic representation. Memory & Cognition, 21, 449–457.CrossRef Bertamini, M. (1993). Memory for position and dynamic representation. Memory & Cognition, 21, 449–457.CrossRef
go back to reference Bosco, G., Carrozzo, M., & Lacquaniti, F. (2008). Contributions of the human temporoparietal junction and MT/V5+ to the timing of interception revealed by transcranial magnetic stimulation. Journal of Neuroscience, 28, 12071–12084.CrossRefPubMed Bosco, G., Carrozzo, M., & Lacquaniti, F. (2008). Contributions of the human temporoparietal junction and MT/V5+ to the timing of interception revealed by transcranial magnetic stimulation. Journal of Neuroscience, 28, 12071–12084.CrossRefPubMed
go back to reference Bosco, G., Monache, D., S., & Lacquaniti, F. (2012). Catching what we can’t see: Manual interception of occluded fly-ball trajectories. PLos One, 7, e49381.CrossRefPubMedPubMedCentral Bosco, G., Monache, D., S., & Lacquaniti, F. (2012). Catching what we can’t see: Manual interception of occluded fly-ball trajectories. PLos One, 7, e49381.CrossRefPubMedPubMedCentral
go back to reference De Sá Teixeira, N. (2014). Fourier decomposition of spatial localization errors reveals an idiotropic dominance of an internal model of gravity. Vision Research, 105, 177–188.CrossRefPubMed De Sá Teixeira, N. (2014). Fourier decomposition of spatial localization errors reveals an idiotropic dominance of an internal model of gravity. Vision Research, 105, 177–188.CrossRefPubMed
go back to reference De Sá Teixeira, N. A. (2016). The visual representations of motion and of gravity are functionally independent: Evidence of a differential effect of smooth pursuit eye movements. Experimental Brain Research, 234, 2491–2504.CrossRefPubMed De Sá Teixeira, N. A. (2016). The visual representations of motion and of gravity are functionally independent: Evidence of a differential effect of smooth pursuit eye movements. Experimental Brain Research, 234, 2491–2504.CrossRefPubMed
go back to reference De Sá Teixeira, N. A., & Hecht, H. (2014). The dynamic representation of gravity is suspended when the idiotropic vector is misaligned with gravity. Journal of Vestibular Research, 24, 267–279.PubMed De Sá Teixeira, N. A., & Hecht, H. (2014). The dynamic representation of gravity is suspended when the idiotropic vector is misaligned with gravity. Journal of Vestibular Research, 24, 267–279.PubMed
go back to reference De Sá Teixeira, N. A., Hecht, H., Artiles, A. D., Seyedmadani, K., Sherwood, D. P., & Young, L. R. (2016). Vestibular stimulation interferes with the dynamics of an internal representation of gravity. Quarterly Journal of Experimental Psychology, 70, 2290–2305.CrossRef De Sá Teixeira, N. A., Hecht, H., Artiles, A. D., Seyedmadani, K., Sherwood, D. P., & Young, L. R. (2016). Vestibular stimulation interferes with the dynamics of an internal representation of gravity. Quarterly Journal of Experimental Psychology, 70, 2290–2305.CrossRef
go back to reference De Sá Teixeira, N. A., Hecht, H., & Oliveira, A. M. (2013). The representational dynamics of remembered projectile locations. Journal of Experimental Psychology: Human Perception and Performance, 39, 1690–1699.PubMed De Sá Teixeira, N. A., Hecht, H., & Oliveira, A. M. (2013). The representational dynamics of remembered projectile locations. Journal of Experimental Psychology: Human Perception and Performance, 39, 1690–1699.PubMed
go back to reference De Sá Teixeira, N. A., & Oliveira, A. M. (2013). Explorando a trajetória espácio-temporal da representação dinâmica de projéteis. Psicologia: Reflexão e Crítica, 26, 721–729. De Sá Teixeira, N. A., & Oliveira, A. M. (2013). Explorando a trajetória espácio-temporal da representação dinâmica de projéteis. Psicologia: Reflexão e Crítica, 26, 721–729.
go back to reference Delle Monache, S., Lacquaniti, F., & Bosco, G. (2014). Eye movements and manual interception of ballistic trajectories: Effects of law of motion perturbations and occlusions. Experimental Brain Research, 233, 359–374.CrossRefPubMed Delle Monache, S., Lacquaniti, F., & Bosco, G. (2014). Eye movements and manual interception of ballistic trajectories: Effects of law of motion perturbations and occlusions. Experimental Brain Research, 233, 359–374.CrossRefPubMed
go back to reference Duarte, M. (2015). Comments on “Ellipse area calculations and their applicability in posturography” (Schubert and Kirchner, vol. 39, pages 518–522, 2014). Gait Posture, 41, 44–45. Duarte, M. (2015). Comments on “Ellipse area calculations and their applicability in posturography” (Schubert and Kirchner, vol. 39, pages 518–522, 2014). Gait Posture, 41, 44–45.
go back to reference Freyd, J. J. (1983). The mental representation of movement when static stimuli are viewed. Perception & Psychophysics, 33, 575–581.CrossRef Freyd, J. J. (1983). The mental representation of movement when static stimuli are viewed. Perception & Psychophysics, 33, 575–581.CrossRef
go back to reference Freyd, J. J., & Finke, R. A. (1984). Representational momentum. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10, 126–132. Freyd, J. J., & Finke, R. A. (1984). Representational momentum. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10, 126–132.
go back to reference Freyd, J. J., & Johnson, J. Q. (1987). Probing the time course of representational momentum. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13, 259–269.PubMed Freyd, J. J., & Johnson, J. Q. (1987). Probing the time course of representational momentum. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13, 259–269.PubMed
go back to reference Freyd, J. J., Pantzer, T. M., & Cheng, J. L. (1988). Representing statics as forces in equilibrium. Journal of Experimental Psychology: General, 117, 395–407.CrossRef Freyd, J. J., Pantzer, T. M., & Cheng, J. L. (1988). Representing statics as forces in equilibrium. Journal of Experimental Psychology: General, 117, 395–407.CrossRef
go back to reference Hayes, A. E., & Freyd, J. J. (2002). Representational momentum when attention is divided. Visual Cognition, 9, 8–27.CrossRef Hayes, A. E., & Freyd, J. J. (2002). Representational momentum when attention is divided. Visual Cognition, 9, 8–27.CrossRef
go back to reference Hecht, H., & Bertamini, M. (2000). Understanding projectile acceleration. Journal of Experimental Psychology: Human Perception and Performance, 26(2), 730–746. Hecht, H., & Bertamini, M. (2000). Understanding projectile acceleration. Journal of Experimental Psychology: Human Perception and Performance, 26(2), 730–746.
go back to reference Hubbard, T. L. (1990). Cognitive representation of linear motion: Possible direction and gravity effects in judged displacement. Memory & Cognition, 18, 299–309.CrossRef Hubbard, T. L. (1990). Cognitive representation of linear motion: Possible direction and gravity effects in judged displacement. Memory & Cognition, 18, 299–309.CrossRef
go back to reference Hubbard, T. L. (1997). Target size and displacement along the axis of implied gravitational attraction: Effects of implied weight and evidence of representational gravity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23, 1484–1493. Hubbard, T. L. (1997). Target size and displacement along the axis of implied gravitational attraction: Effects of implied weight and evidence of representational gravity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23, 1484–1493.
go back to reference Hubbard, T. L. (2005). Representational momentum and related displacements in spatial memory: A review of the findings. Psychonomic Bulletin and Review, 12, 822–851.CrossRefPubMed Hubbard, T. L. (2005). Representational momentum and related displacements in spatial memory: A review of the findings. Psychonomic Bulletin and Review, 12, 822–851.CrossRefPubMed
go back to reference Hubbard, T. L. (2010). Approaches to representational momentum: Theories and models. In R. Nijhawan & B. Khurana (Eds.), Space and time in perception and action (pp. 338–365). Cambridge: Cambridge University Press.CrossRef Hubbard, T. L. (2010). Approaches to representational momentum: Theories and models. In R. Nijhawan & B. Khurana (Eds.), Space and time in perception and action (pp. 338–365). Cambridge: Cambridge University Press.CrossRef
go back to reference Hubbard, T. L. (2014). Forms of momentum across space: Representational, operational, and attentional. Psychonomic Bulletin & Review, 21, 1371–1403.CrossRef Hubbard, T. L. (2014). Forms of momentum across space: Representational, operational, and attentional. Psychonomic Bulletin & Review, 21, 1371–1403.CrossRef
go back to reference Hubbard, T. L. (2015). The varieties of momentum-like experience. Psychological Bulletin, 141, 1081–1119.CrossRefPubMed Hubbard, T. L. (2015). The varieties of momentum-like experience. Psychological Bulletin, 141, 1081–1119.CrossRefPubMed
go back to reference Hubbard, T. L., & Bharucha, J. J. (1988). Judged displacement in apparent vertical and horizontal motion. Perception & Psychophysics, 44, 211–221.CrossRef Hubbard, T. L., & Bharucha, J. J. (1988). Judged displacement in apparent vertical and horizontal motion. Perception & Psychophysics, 44, 211–221.CrossRef
go back to reference Kerzel, D. (2000). Eye movements and visible persistence explain the mislocalization of the final position of a moving target. Vision Research, 40, 3703–3715.CrossRefPubMed Kerzel, D. (2000). Eye movements and visible persistence explain the mislocalization of the final position of a moving target. Vision Research, 40, 3703–3715.CrossRefPubMed
go back to reference Kerzel, D. (2002). The locus of “memory displacement” is at least partially perceptual: Effects of velocity, expectation, friction, memory averaging, and weight. Perception & Psychophysics, 64, 680–692.CrossRef Kerzel, D. (2002). The locus of “memory displacement” is at least partially perceptual: Effects of velocity, expectation, friction, memory averaging, and weight. Perception & Psychophysics, 64, 680–692.CrossRef
go back to reference Kerzel, D. (2003a). Mental extrapolation of target position is strongest with weak motion signals and motor responses. Vision Research, 43, 2623–2635.CrossRefPubMed Kerzel, D. (2003a). Mental extrapolation of target position is strongest with weak motion signals and motor responses. Vision Research, 43, 2623–2635.CrossRefPubMed
go back to reference Kerzel, D. (2003b). Attention maintains mental extrapolation of target position: Irrelevant distractors eliminate forward displacement after implied motion. Cognition, 88, 109–131.CrossRefPubMed Kerzel, D. (2003b). Attention maintains mental extrapolation of target position: Irrelevant distractors eliminate forward displacement after implied motion. Cognition, 88, 109–131.CrossRefPubMed
go back to reference Kerzel, D. (2003c). Centripetal force draws the eyes, not memory of the target, toward the center. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29, 458–466.PubMed Kerzel, D. (2003c). Centripetal force draws the eyes, not memory of the target, toward the center. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29, 458–466.PubMed
go back to reference Kerzel, D. (2004). Attentional load modulates mislocalization of moving stimuli, but does not eliminate the error. Psychonomic Bulletin & Review, 11, 848–853.CrossRef Kerzel, D. (2004). Attentional load modulates mislocalization of moving stimuli, but does not eliminate the error. Psychonomic Bulletin & Review, 11, 848–853.CrossRef
go back to reference Kerzel, D., & Gegenfurtner, K. R. (2003). Neuronal processing delays are compensated in the sensorimotor branch of the visual system. Current Biology, 13, 1975–1978.CrossRefPubMed Kerzel, D., & Gegenfurtner, K. R. (2003). Neuronal processing delays are compensated in the sensorimotor branch of the visual system. Current Biology, 13, 1975–1978.CrossRefPubMed
go back to reference Kerzel, D., Jordan, J. S., & Müsseler, J. (2001). The role of perception in the mislocalization of the final position of a moving target. Journal of Experimental Psychology: Human Perception and Performance, 27, 829–840.PubMed Kerzel, D., Jordan, J. S., & Müsseler, J. (2001). The role of perception in the mislocalization of the final position of a moving target. Journal of Experimental Psychology: Human Perception and Performance, 27, 829–840.PubMed
go back to reference La Scaleia, B., Zago, M., & Lacquaniti, F. (2015). Hand interception of occluded motion in humans: A test of model-based vs. on-line control. Journal of Neurophysiology, 114, 1577–1592.CrossRefPubMedPubMedCentral La Scaleia, B., Zago, M., & Lacquaniti, F. (2015). Hand interception of occluded motion in humans: A test of model-based vs. on-line control. Journal of Neurophysiology, 114, 1577–1592.CrossRefPubMedPubMedCentral
go back to reference Lacquaniti, F., Bosco, G., Gravano, S., Indovina, I., La Scaleia, B., Maffei, V., & Zago, M. (2014). Multisensory integration and internal models for sensing gravity effects in primates. BioMed Research International, 615854. Lacquaniti, F., Bosco, G., Gravano, S., Indovina, I., La Scaleia, B., Maffei, V., & Zago, M. (2014). Multisensory integration and internal models for sensing gravity effects in primates. BioMed Research International, 615854.
go back to reference Lacquaniti, F., Bosco, G., Indovina, I., La Scaleia, B., Maffei, V., Moscatelli, A., & Zago, M. (2013). Visual gravitational motion and the vestibular system in humans. Frontiers of Integrative Neuroscience, 7, Article 101. Lacquaniti, F., Bosco, G., Indovina, I., La Scaleia, B., Maffei, V., Moscatelli, A., & Zago, M. (2013). Visual gravitational motion and the vestibular system in humans. Frontiers of Integrative Neuroscience, 7, Article 101.
go back to reference McIntyre, J., Zago, M., Berthoz, A., & Lacquaniti, F. (2001). Does the brain model Newton’s laws? Nature Neuroscience, 4, 693–694.CrossRefPubMed McIntyre, J., Zago, M., Berthoz, A., & Lacquaniti, F. (2001). Does the brain model Newton’s laws? Nature Neuroscience, 4, 693–694.CrossRefPubMed
go back to reference Mitrani, L., & Dimitrov, G. (1978). Pursuit eye movements of a disappearing moving target. Vision Research, 18, 537–539.CrossRefPubMed Mitrani, L., & Dimitrov, G. (1978). Pursuit eye movements of a disappearing moving target. Vision Research, 18, 537–539.CrossRefPubMed
go back to reference Moscatelli, A., & Lacquaniti, F. (2011). The weight of time: gravitational force enhances discrimination of visual motion duration. Journal of Vision, 11(4), 1–17.CrossRef Moscatelli, A., & Lacquaniti, F. (2011). The weight of time: gravitational force enhances discrimination of visual motion duration. Journal of Vision, 11(4), 1–17.CrossRef
go back to reference Müsseler, J., Stork, S., & Kerzel, D. (2002). Comparing mislocalizations with moving stimuli: The Fröhlich effect, the flash-lag, and representational momentum. Visual Cognition, 9, 120–138.CrossRef Müsseler, J., Stork, S., & Kerzel, D. (2002). Comparing mislocalizations with moving stimuli: The Fröhlich effect, the flash-lag, and representational momentum. Visual Cognition, 9, 120–138.CrossRef
go back to reference Nagai, M., Kazai, K., & Yagi, A. (2002). Larger forward memory displacement in the direction of gravity. Visual Cognition, 9, 28–40.CrossRef Nagai, M., Kazai, K., & Yagi, A. (2002). Larger forward memory displacement in the direction of gravity. Visual Cognition, 9, 28–40.CrossRef
go back to reference Reed, C. L., & Vinson, N. G. (1996). Conceptual effects on representational momentum. Journal of Experimental Psychology: Human Perception and Performance, 22, 839–850.PubMed Reed, C. L., & Vinson, N. G. (1996). Conceptual effects on representational momentum. Journal of Experimental Psychology: Human Perception and Performance, 22, 839–850.PubMed
go back to reference Séac’h, A., Senot, P., & McIntyre, J. (2010). Egocentric and allocentric frames for catching a falling object. Experimental Brain Research, 201, 653–662.CrossRefPubMed Séac’h, A., Senot, P., & McIntyre, J. (2010). Egocentric and allocentric frames for catching a falling object. Experimental Brain Research, 201, 653–662.CrossRefPubMed
go back to reference Senot, P., Baillet, S., Renault, B., & Berthoz, A. (2008). Cortical dynamics of anticipatory mechanisms in interception: A neuromagnetic study. Journal of Cognitive Neuroscience, 20, 1827–1838.CrossRefPubMed Senot, P., Baillet, S., Renault, B., & Berthoz, A. (2008). Cortical dynamics of anticipatory mechanisms in interception: A neuromagnetic study. Journal of Cognitive Neuroscience, 20, 1827–1838.CrossRefPubMed
go back to reference Senot, P., Zago, M., Lacquaniti, F., & McIntyre, J. (2005). Anticipanting the effects of gravity when intercepting moving objects: Differentiating up and down based on nonvisual cues. Journal of Neurophysiology, 94, 4471–4480.CrossRefPubMed Senot, P., Zago, M., Lacquaniti, F., & McIntyre, J. (2005). Anticipanting the effects of gravity when intercepting moving objects: Differentiating up and down based on nonvisual cues. Journal of Neurophysiology, 94, 4471–4480.CrossRefPubMed
go back to reference Senot, P., Zago, M., Séac’h, A., Zaoui, M., Berthoz, A., Lacquantiti, F., & McIntyre, J. (2012). When up is down in 0 g; How gravity sensing affects the timing of interceptive actions. The Journal of Neuroscience, 32(6), 1969–1973.CrossRefPubMedPubMedCentral Senot, P., Zago, M., Séac’h, A., Zaoui, M., Berthoz, A., Lacquantiti, F., & McIntyre, J. (2012). When up is down in 0 g; How gravity sensing affects the timing of interceptive actions. The Journal of Neuroscience, 32(6), 1969–1973.CrossRefPubMedPubMedCentral
go back to reference Zago, M., Bosco, G., Maffei, V., Iosa, M., Ivanenko, Y. P., & Lacquaniti, F. (2004). Internal models of target motion: expected dynamics overrides measured kinematics in timing manual interceptions. Journal of Neurophysiology, 91(4), 1620–1634.CrossRefPubMed Zago, M., Bosco, G., Maffei, V., Iosa, M., Ivanenko, Y. P., & Lacquaniti, F. (2004). Internal models of target motion: expected dynamics overrides measured kinematics in timing manual interceptions. Journal of Neurophysiology, 91(4), 1620–1634.CrossRefPubMed
go back to reference Zago, M., McIntyre, J., Senot, P., & Lacquaniti, F. (2008). Internal models and prediction of visual gravitational motion. Vision Research, 48, 1532–1538.CrossRefPubMed Zago, M., McIntyre, J., Senot, P., & Lacquaniti, F. (2008). Internal models and prediction of visual gravitational motion. Vision Research, 48, 1532–1538.CrossRefPubMed
Metagegevens
Titel
A novel dissociation between representational momentum and representational gravity through response modality
Auteurs
Nuno Alexandre De Sá Teixeira
Dirk Kerzel
Heiko Hecht
Francesco Lacquaniti
Publicatiedatum
23-11-2017
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 6/2019
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-017-0949-4