Skip to main content
Top
Gepubliceerd in: Journal of Autism and Developmental Disorders 1/2013

01-01-2013 | Original Paper

A Common Susceptibility Factor of Both Autism and Epilepsy: Functional Deficiency of GABAA Receptors

Auteurs: Jing-Qiong Kang, Gregory Barnes

Gepubliceerd in: Journal of Autism and Developmental Disorders | Uitgave 1/2013

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Autism and epilepsy are common childhood neurological disorders with a great heterogeneity of clinical phenotypes as well as risk factors. There is a high co-morbidity of autism and epilepsy. The neuropathology of autism and epilepsy has similar histology implicating the processes of neurogenesis, neural migration, programmed cell death, and neurite outgrowth. Genetic advances have identified multiple molecules that participate in neural development, brain network connectivity, and synaptic function which are involved in the pathogenesis of autism and epilepsy. Mutations in GABAA receptor subunit have been frequently associated with epilepsy, autism, and other neuropsychiatric disorders. In this paper, we address the hypothesis that functional deficiency of GABAergic signaling is a potential common molecular mechanism underpinning the co-morbidity of autism and epilepsy.
Literatuur
go back to reference Abrahams, B. S., & Geschwind, D. H. (2008). Advances in autism genetics: On the threshold of a new neurobiology. Nature Reviews Genetics, 9(5), 341–355.PubMedCrossRef Abrahams, B. S., & Geschwind, D. H. (2008). Advances in autism genetics: On the threshold of a new neurobiology. Nature Reviews Genetics, 9(5), 341–355.PubMedCrossRef
go back to reference Allen, G., & Courchesne, E. (2003). Differential effects of developmental cerebellar abnormality on cognitive and motor functions in the cerebellum: An fMRI study of autism. American Journal of Psychiatry, 160(2), 262–273.PubMedCrossRef Allen, G., & Courchesne, E. (2003). Differential effects of developmental cerebellar abnormality on cognitive and motor functions in the cerebellum: An fMRI study of autism. American Journal of Psychiatry, 160(2), 262–273.PubMedCrossRef
go back to reference Andang, M., Hjerling-Leffler, J., et al. (2008). Histone H2AX-dependent GABA(A) receptor regulation of stem cell proliferation. Nature, 451(7177), 460–464.PubMedCrossRef Andang, M., Hjerling-Leffler, J., et al. (2008). Histone H2AX-dependent GABA(A) receptor regulation of stem cell proliferation. Nature, 451(7177), 460–464.PubMedCrossRef
go back to reference Antar, L. N., Afroz, R., Dictenberg, J. B., Carroll, R. C., & Bassell, G. J. (2004). Metabotropic glutamate receptor activation regulates fragile × mental retardation protein and FMR1 mRNA localization differentially in dendrites and at synapses. Journal of Neuroscience, 24(11), 2648–2655.PubMedCrossRef Antar, L. N., Afroz, R., Dictenberg, J. B., Carroll, R. C., & Bassell, G. J. (2004). Metabotropic glutamate receptor activation regulates fragile × mental retardation protein and FMR1 mRNA localization differentially in dendrites and at synapses. Journal of Neuroscience, 24(11), 2648–2655.PubMedCrossRef
go back to reference Ashley-Koch, A. E., Mei, H., et al. (2006). An analysis paradigm for investigating multi-locus effects in complex disease: Examination of three GABA receptor subunit genes on 15q11-q13 as risk factors for autistic disorder. Annals of Human Genetics, 70(Pt 3), 281–292.PubMedCrossRef Ashley-Koch, A. E., Mei, H., et al. (2006). An analysis paradigm for investigating multi-locus effects in complex disease: Examination of three GABA receptor subunit genes on 15q11-q13 as risk factors for autistic disorder. Annals of Human Genetics, 70(Pt 3), 281–292.PubMedCrossRef
go back to reference Bailey, A., Le Couteur, A., et al. (1995). Autism as a strongly genetic disorder: Evidence from a British twin study. Psychological Medicine, 25(1), 63–77.PubMedCrossRef Bailey, A., Le Couteur, A., et al. (1995). Autism as a strongly genetic disorder: Evidence from a British twin study. Psychological Medicine, 25(1), 63–77.PubMedCrossRef
go back to reference Baumann, S. W., Baur, R., et al. (2002). Forced subunit assembly in alpha1beta2gamma2 GABAA receptors. Insight into the absolute arrangement. Journal of Biological Chemistry, 277(48), 46020–46025.PubMedCrossRef Baumann, S. W., Baur, R., et al. (2002). Forced subunit assembly in alpha1beta2gamma2 GABAA receptors. Insight into the absolute arrangement. Journal of Biological Chemistry, 277(48), 46020–46025.PubMedCrossRef
go back to reference Bear, M. F., Huber, K. M., et al. (2004). The mGluR theory of fragile × mental retardation. Trends in Neurosciences, 7, 370–377.CrossRef Bear, M. F., Huber, K. M., et al. (2004). The mGluR theory of fragile × mental retardation. Trends in Neurosciences, 7, 370–377.CrossRef
go back to reference Behar, T. N., et al. (2000). GABA receptor antagonists modulate postmitotic cell migration in slice cultures of embryonic rat cortex. Cerebral Cortex, 10(9), 899–909.PubMedCrossRef Behar, T. N., et al. (2000). GABA receptor antagonists modulate postmitotic cell migration in slice cultures of embryonic rat cortex. Cerebral Cortex, 10(9), 899–909.PubMedCrossRef
go back to reference Benbadis, S. R. (2005). The management of idiopathic generalized epilepsies. Acta Neurologica Scandinavica, 112(supp. 181), 63–67.CrossRef Benbadis, S. R. (2005). The management of idiopathic generalized epilepsies. Acta Neurologica Scandinavica, 112(supp. 181), 63–67.CrossRef
go back to reference Berg, A. T., Plioplys, S., et al. (2011). Risk and correlates of autism spectrum disorders in children with epilepsy: A community based study. Journal of Child Neurology, 26(5), 540–547.PubMedCrossRef Berg, A. T., Plioplys, S., et al. (2011). Risk and correlates of autism spectrum disorders in children with epilepsy: A community based study. Journal of Child Neurology, 26(5), 540–547.PubMedCrossRef
go back to reference Bloss, C. S., & Courchesne, E. (2007). MRI neuroanatomy in young girls with autism: A preliminary study. Journal of the American Academy of Child and Adolescent Psychiatry, 46(4), 515–523.PubMedCrossRef Bloss, C. S., & Courchesne, E. (2007). MRI neuroanatomy in young girls with autism: A preliminary study. Journal of the American Academy of Child and Adolescent Psychiatry, 46(4), 515–523.PubMedCrossRef
go back to reference Blumcke, I., Kistner, I., et al. (2009). Towards a clinico-pathological classification of granule cell dispersion in human mesial temporal lobe epilepsies. Acta Neuropathologica, 117(5), 535–544.PubMedCrossRef Blumcke, I., Kistner, I., et al. (2009). Towards a clinico-pathological classification of granule cell dispersion in human mesial temporal lobe epilepsies. Acta Neuropathologica, 117(5), 535–544.PubMedCrossRef
go back to reference Brambilla, P., Hardan, A., et al. (2003). Brain anatomy and development in autism: Review of structural MRI studies. Brain Research Bulletin, 61(6), 557–569.PubMedCrossRef Brambilla, P., Hardan, A., et al. (2003). Brain anatomy and development in autism: Review of structural MRI studies. Brain Research Bulletin, 61(6), 557–569.PubMedCrossRef
go back to reference Brooks-Kayal, A. (2011). Molecular mechanisms of cognitive and behavioral comorbidities of epilepsy in children. Epilepsia, 52(Suppl 1), 13–20.PubMedCrossRef Brooks-Kayal, A. (2011). Molecular mechanisms of cognitive and behavioral comorbidities of epilepsy in children. Epilepsia, 52(Suppl 1), 13–20.PubMedCrossRef
go back to reference Buxbaum, J. D., Silverman, J. M., et al. (2002). Association between a GABRB3 polymorphism and autism. Molecular Psychiatry, 7(3), 311–316.PubMedCrossRef Buxbaum, J. D., Silverman, J. M., et al. (2002). Association between a GABRB3 polymorphism and autism. Molecular Psychiatry, 7(3), 311–316.PubMedCrossRef
go back to reference Cancedda, L., Fiumelli, H., et al. (2007). Excitatory GABA action is essential for morphological maturation of cortical neurons in vivo. Journal of Neuroscience, 27(19), 5224–5235.PubMedCrossRef Cancedda, L., Fiumelli, H., et al. (2007). Excitatory GABA action is essential for morphological maturation of cortical neurons in vivo. Journal of Neuroscience, 27(19), 5224–5235.PubMedCrossRef
go back to reference Carmona-Mora, P., & Walz, K. (2010). Retinoic acid induced 1, RAI1: A dosage sensitive gene related to neurobehavioral alterations including autistic behavior. Current Genomics, 11(8), 607–617.PubMedCrossRef Carmona-Mora, P., & Walz, K. (2010). Retinoic acid induced 1, RAI1: A dosage sensitive gene related to neurobehavioral alterations including autistic behavior. Current Genomics, 11(8), 607–617.PubMedCrossRef
go back to reference Chang, Y., Wang, R., et al. (1996). Stoichiometry of a recombinant GABAA receptor. Journal of Neuroscience, 16(17), 5415–5424.PubMed Chang, Y., Wang, R., et al. (1996). Stoichiometry of a recombinant GABAA receptor. Journal of Neuroscience, 16(17), 5415–5424.PubMed
go back to reference Chao, H. T., Chen, H., et al. (2010). Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature, 468(7321), 263–269.PubMedCrossRef Chao, H. T., Chen, H., et al. (2010). Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature, 468(7321), 263–269.PubMedCrossRef
go back to reference Chiu, C., Reid, C. A., et al. (2008). Developmental impact of a familial GABAA receptor epilepsy mutation. Annals of Neurology, 64(3), 284–293.PubMedCrossRef Chiu, C., Reid, C. A., et al. (2008). Developmental impact of a familial GABAA receptor epilepsy mutation. Annals of Neurology, 64(3), 284–293.PubMedCrossRef
go back to reference Collins, A. L., Ma, D., et al. (2006). Investigation of autism and GABA receptor subunit genes in multiple ethnic groups. Neurogenetics, 7(3), 167–174.PubMedCrossRef Collins, A. L., Ma, D., et al. (2006). Investigation of autism and GABA receptor subunit genes in multiple ethnic groups. Neurogenetics, 7(3), 167–174.PubMedCrossRef
go back to reference Cook, E. H., Jr., Lindgren, V., et al. (1997). Autism or atypical autism in maternally but not paternally derived proximal 15q duplication. American Journal of Human Genetics, 60(4), 928–934.PubMed Cook, E. H., Jr., Lindgren, V., et al. (1997). Autism or atypical autism in maternally but not paternally derived proximal 15q duplication. American Journal of Human Genetics, 60(4), 928–934.PubMed
go back to reference Courchesne, E. (2002). Abnormal early brain development in autism. Molecular Psychiatry, 7(Suppl 2), S21–S23.PubMedCrossRef Courchesne, E. (2002). Abnormal early brain development in autism. Molecular Psychiatry, 7(Suppl 2), S21–S23.PubMedCrossRef
go back to reference Courchesne, E., Carper, R., et al. (2003). Evidence of brain overgrowth in the first year of life in autism. JAMA, 290(3), 337–344.PubMedCrossRef Courchesne, E., Carper, R., et al. (2003). Evidence of brain overgrowth in the first year of life in autism. JAMA, 290(3), 337–344.PubMedCrossRef
go back to reference Cuccaro, M. L., Tuchman, R. F., et al. (2011). Exploring the relationship between autism spectrum disorder and epilepsy using latent class cluster analysis. Journal of Autism and Developmental Disorders. [Epub ahead of print]. Cuccaro, M. L., Tuchman, R. F., et al. (2011). Exploring the relationship between autism spectrum disorder and epilepsy using latent class cluster analysis. Journal of Autism and Developmental Disorders. [Epub ahead of print].
go back to reference Delahanty, R. J., Kang, J. Q., et al. (2011). Maternal transmission of a rare GABRB3 signal peptide variant is associated with autism. Molecular Psychiatry, 16(1), 86–96.PubMedCrossRef Delahanty, R. J., Kang, J. Q., et al. (2011). Maternal transmission of a rare GABRB3 signal peptide variant is associated with autism. Molecular Psychiatry, 16(1), 86–96.PubMedCrossRef
go back to reference Delong, R. (2007). GABA(A) receptor alpha5 subunit as a candidate gene for autism and bipolar disorder: A proposed endophenotype with parent-of-origin and gain-of-function features, with or without oculocutaneous albinism. Autism, 11(2), 135–147.PubMedCrossRef Delong, R. (2007). GABA(A) receptor alpha5 subunit as a candidate gene for autism and bipolar disorder: A proposed endophenotype with parent-of-origin and gain-of-function features, with or without oculocutaneous albinism. Autism, 11(2), 135–147.PubMedCrossRef
go back to reference DeLorey, T. M., Handforth, A., et al. (1998). Mice lacking the beta3 subunit of the GABAA receptor have the epilepsy phenotype and many of the behavioral characteristics of Angelman syndrome. Journal of Neuroscience, 18(20), 8505–8514.PubMed DeLorey, T. M., Handforth, A., et al. (1998). Mice lacking the beta3 subunit of the GABAA receptor have the epilepsy phenotype and many of the behavioral characteristics of Angelman syndrome. Journal of Neuroscience, 18(20), 8505–8514.PubMed
go back to reference DeLorey, T. M., Sahbaie, P., et al. (2008). Gabrb3 gene deficient mice exhibit impaired social and exploratory behaviors, deficits in non-selective attention and hypoplasia of cerebellar vermal lobules: A potential model of autism spectrum disorder. Behavioural Brain Research, 187(2), 207–220.PubMedCrossRef DeLorey, T. M., Sahbaie, P., et al. (2008). Gabrb3 gene deficient mice exhibit impaired social and exploratory behaviors, deficits in non-selective attention and hypoplasia of cerebellar vermal lobules: A potential model of autism spectrum disorder. Behavioural Brain Research, 187(2), 207–220.PubMedCrossRef
go back to reference DeMyer, M. K. (1975). Research in infantile autism: A strategy and its results. Biological Psychiatry, 10(4), 433–452.PubMed DeMyer, M. K. (1975). Research in infantile autism: A strategy and its results. Biological Psychiatry, 10(4), 433–452.PubMed
go back to reference Deykin, E. Y., & MacMahon, B. (1979). The incidence of seizures among children with autistic symptoms. American Journal of Psychiatry, 136(10), 1310–1312.PubMed Deykin, E. Y., & MacMahon, B. (1979). The incidence of seizures among children with autistic symptoms. American Journal of Psychiatry, 136(10), 1310–1312.PubMed
go back to reference D’Hulst, C., De Geest, N., et al. (2006). Decreased expression of the GABAA receptor in fragile × syndrome. Brain Research, 1121(1), 238–245.PubMedCrossRef D’Hulst, C., De Geest, N., et al. (2006). Decreased expression of the GABAA receptor in fragile × syndrome. Brain Research, 1121(1), 238–245.PubMedCrossRef
go back to reference Dibbens, L. M., Harkin, L. A., et al. (2009). The role of neuronal GABA(A) receptor subunit mutations in idiopathic generalized epilepsies. Neuroscience Letters, 453(3), 162–165.PubMedCrossRef Dibbens, L. M., Harkin, L. A., et al. (2009). The role of neuronal GABA(A) receptor subunit mutations in idiopathic generalized epilepsies. Neuroscience Letters, 453(3), 162–165.PubMedCrossRef
go back to reference Dölen, G., Osterweil, E., et al. (2007). Correction of fragile × syndrome in mice. Neuron, 56(6), 955–962.PubMedCrossRef Dölen, G., Osterweil, E., et al. (2007). Correction of fragile × syndrome in mice. Neuron, 56(6), 955–962.PubMedCrossRef
go back to reference Eagleson, K. L., Campbell, D. B., et al. (2011). The autism risk genes MET and PLAUR differentially impact cortical development. Autism Research, 4(1), 68–83.PubMedCrossRef Eagleson, K. L., Campbell, D. B., et al. (2011). The autism risk genes MET and PLAUR differentially impact cortical development. Autism Research, 4(1), 68–83.PubMedCrossRef
go back to reference Eagleson, K. L., Gravielle, M. C., et al. (2010). Genetic disruption of the autism spectrum disorder risk gene PLAUR induces GABAA receptor subunit changes. Neuroscience, 168(3), 797–810.PubMedCrossRef Eagleson, K. L., Gravielle, M. C., et al. (2010). Genetic disruption of the autism spectrum disorder risk gene PLAUR induces GABAA receptor subunit changes. Neuroscience, 168(3), 797–810.PubMedCrossRef
go back to reference Escayg, A., De Waard, M., et al. (2000). Coding and noncoding variation of the human calcium-channel beta4-subunit gene CACNB4 in patients with idiopathic generalized epilepsy and episodic ataxia. American Journal of Human Genetics, 66(5), 1531–1539.PubMedCrossRef Escayg, A., De Waard, M., et al. (2000). Coding and noncoding variation of the human calcium-channel beta4-subunit gene CACNB4 in patients with idiopathic generalized epilepsy and episodic ataxia. American Journal of Human Genetics, 66(5), 1531–1539.PubMedCrossRef
go back to reference Fagiolini, M., Fritschy, J. M., et al. (2004). Specific GABAA circuits for visual cortical plasticity. Science, 303(5664), 1681–1683.PubMedCrossRef Fagiolini, M., Fritschy, J. M., et al. (2004). Specific GABAA circuits for visual cortical plasticity. Science, 303(5664), 1681–1683.PubMedCrossRef
go back to reference Fastenau, P. S., et al. (2004). Neuropsychological predictors of academic underachievement in pediatric epilepsy: Moderating roles of demographic, seizure, and psychosocial variables. Epilepsia, 45, 1261–1272.PubMedCrossRef Fastenau, P. S., et al. (2004). Neuropsychological predictors of academic underachievement in pediatric epilepsy: Moderating roles of demographic, seizure, and psychosocial variables. Epilepsia, 45, 1261–1272.PubMedCrossRef
go back to reference Fastenau, P. S., et al. (2009). Neuropsychological status at seizure onset in children: Risk factors for early cognitive deficits. Neurology, 73, 526–534.PubMedCrossRef Fastenau, P. S., et al. (2009). Neuropsychological status at seizure onset in children: Risk factors for early cognitive deficits. Neurology, 73, 526–534.PubMedCrossRef
go back to reference Fatemi, S. H., Folsom, T. D., Kneeland, R. E., & Liesch, S. B. (2011). Metabotropic glutamate receptor 5 upregulation in children with autism is associated with underexpression of both Fragile × mental retardation protein and GABAA receptor beta 3 in adults with autism. Anat Rec (Hoboken), 294(10), 1635–1645.CrossRef Fatemi, S. H., Folsom, T. D., Kneeland, R. E., & Liesch, S. B. (2011). Metabotropic glutamate receptor 5 upregulation in children with autism is associated with underexpression of both Fragile × mental retardation protein and GABAA receptor beta 3 in adults with autism. Anat Rec (Hoboken), 294(10), 1635–1645.CrossRef
go back to reference Fatemi, S. H., Reutiman, T. J., et al. (2009). GABA(A) receptor downregulation in brains of subjects with autism. Journal of Autism and Developmental Disorders, 39(2), 223–230.PubMedCrossRef Fatemi, S. H., Reutiman, T. J., et al. (2009). GABA(A) receptor downregulation in brains of subjects with autism. Journal of Autism and Developmental Disorders, 39(2), 223–230.PubMedCrossRef
go back to reference Fatemi, S. H., Reutiman, T. J., et al. (2010). mRNA and Protein Levels for GABA(A)alpha4, alpha5, beta1 and GABA (B)R1 receptors are altered in brains from subjects with autism. Journal of Autism and Developmental Disorders, 40(6), 743–750.PubMedCrossRef Fatemi, S. H., Reutiman, T. J., et al. (2010). mRNA and Protein Levels for GABA(A)alpha4, alpha5, beta1 and GABA (B)R1 receptors are altered in brains from subjects with autism. Journal of Autism and Developmental Disorders, 40(6), 743–750.PubMedCrossRef
go back to reference Gant, J. C., et al. (2009). Decreased number of interneurons and increased seizures in neuropilin 2 deficient mice: Implications for autism and epilepsy. Epilepsia, 50(4), 629–645.PubMedCrossRef Gant, J. C., et al. (2009). Decreased number of interneurons and increased seizures in neuropilin 2 deficient mice: Implications for autism and epilepsy. Epilepsia, 50(4), 629–645.PubMedCrossRef
go back to reference Geschwind, D. H., & Levitt, P. (2007). Autism spectrum disorders: Developmental disconnection syndromes. Current Opinion in Neurobiology, 17(1), 103–111.PubMedCrossRef Geschwind, D. H., & Levitt, P. (2007). Autism spectrum disorders: Developmental disconnection syndromes. Current Opinion in Neurobiology, 17(1), 103–111.PubMedCrossRef
go back to reference Glasscock, E., Qian, J., et al. (2007). Masking epilepsy by combining two epilepsy genes. Nature Neuroscience, 10(12), 1554–1558.PubMedCrossRef Glasscock, E., Qian, J., et al. (2007). Masking epilepsy by combining two epilepsy genes. Nature Neuroscience, 10(12), 1554–1558.PubMedCrossRef
go back to reference Goodkin, H. P., & Kapur, J. (2009). The impact of diazepam’s discovery on the treatment and understanding of status epilepticus. Epilepsia, 50(9), 2011–2018.PubMedCrossRef Goodkin, H. P., & Kapur, J. (2009). The impact of diazepam’s discovery on the treatment and understanding of status epilepticus. Epilepsia, 50(9), 2011–2018.PubMedCrossRef
go back to reference Hagerman, P. J., & Stafstrom, C. E. (2009). Origins of epilepsy in fragile × syndrome. Epilepsy Curr, 9, 108–112.PubMedCrossRef Hagerman, P. J., & Stafstrom, C. E. (2009). Origins of epilepsy in fragile × syndrome. Epilepsy Curr, 9, 108–112.PubMedCrossRef
go back to reference Hamiwka, L. D., & Wirrell, E. C. (2009). Comorbidities in pediatric epilepsy: Beyond “just’’ treating the seizures. Journal of Child Neurology, 24, 734–742.PubMedCrossRef Hamiwka, L. D., & Wirrell, E. C. (2009). Comorbidities in pediatric epilepsy: Beyond “just’’ treating the seizures. Journal of Child Neurology, 24, 734–742.PubMedCrossRef
go back to reference Hauser, W. A. (1994). The prevalence and incidence of convulsive disorders in children. Epilepsia, 35(Suppl 2), S1–S6.PubMedCrossRef Hauser, W. A. (1994). The prevalence and incidence of convulsive disorders in children. Epilepsia, 35(Suppl 2), S1–S6.PubMedCrossRef
go back to reference Hawkins, N. A., Martin, M. S., et al. (2011). Neuronal voltage-gated ion channels are genetic modifiers of generalized epilepsy with febrile seizures plus. Neurobiology of Diseases, 41(3), 655–660.CrossRef Hawkins, N. A., Martin, M. S., et al. (2011). Neuronal voltage-gated ion channels are genetic modifiers of generalized epilepsy with febrile seizures plus. Neurobiology of Diseases, 41(3), 655–660.CrossRef
go back to reference Hogart, A., Wu, D., et al. (2010). The comorbidity of autism with the genomic disorders of chromosome 15q11.2–q13. Neurobiology of Disease, 38(2):181–191 (Review). Hogart, A., Wu, D., et al. (2010). The comorbidity of autism with the genomic disorders of chromosome 15q11.2–q13. Neurobiology of Disease, 38(2):181–191 (Review).
go back to reference Hogart, A., et al. (2007). 15q11-13 GABAA receptor genes are normally biallelically expressed in brain yet are subject to epigenetic dysregulation in autism-spectrum disorders. Human Molecular Genetics, 16, 691–703.PubMedCrossRef Hogart, A., et al. (2007). 15q11-13 GABAA receptor genes are normally biallelically expressed in brain yet are subject to epigenetic dysregulation in autism-spectrum disorders. Human Molecular Genetics, 16, 691–703.PubMedCrossRef
go back to reference Horsthemke, B., & Buiting, K. (2006). Imprinting defects on human chromosome 15. Cytogenetic and Genome Research, 113(1–4), 292–299.PubMedCrossRef Horsthemke, B., & Buiting, K. (2006). Imprinting defects on human chromosome 15. Cytogenetic and Genome Research, 113(1–4), 292–299.PubMedCrossRef
go back to reference Horsthemke, B., & Wagstaff, J. (2008). Mechanisms of imprinting of the Prader-Willi/Angelman region. American Journal of Medical Genetics Part A, 146A(16), 2041–2052.PubMedCrossRef Horsthemke, B., & Wagstaff, J. (2008). Mechanisms of imprinting of the Prader-Willi/Angelman region. American Journal of Medical Genetics Part A, 146A(16), 2041–2052.PubMedCrossRef
go back to reference Hughes, J. R., & Melyn, M. (2005). EEG and seizures in autistic children and adolescents: Further findings with therapeutic implications. Clinical EEG & Neuroscience Journal, 36(1), 15–20.CrossRef Hughes, J. R., & Melyn, M. (2005). EEG and seizures in autistic children and adolescents: Further findings with therapeutic implications. Clinical EEG & Neuroscience Journal, 36(1), 15–20.CrossRef
go back to reference Jansen, L. A., Peugh, L. D., et al. (2010). Impaired maturation of cortical GABA(A) receptor expression in pediatric epilepsy. Epilepsia, 51(8), 1456–1467.PubMedCrossRef Jansen, L. A., Peugh, L. D., et al. (2010). Impaired maturation of cortical GABA(A) receptor expression in pediatric epilepsy. Epilepsia, 51(8), 1456–1467.PubMedCrossRef
go back to reference Kang, J. Q., & Macdonald, R. L. (2009). Making sense of nonsense GABA(A) receptor mutations associated with genetic epilepsies. Trends in Molecular Medicine, 15(9), 430–438.PubMedCrossRef Kang, J. Q., & Macdonald, R. L. (2009). Making sense of nonsense GABA(A) receptor mutations associated with genetic epilepsies. Trends in Molecular Medicine, 15(9), 430–438.PubMedCrossRef
go back to reference Knoll, J. H., et al. (1989). Angelman and Prader-Willi syndromes share a common chromosome 15 deletion but differ in parental origin of the deletion. American Journal of Medical Genetics, 32, 285–290.PubMedCrossRef Knoll, J. H., et al. (1989). Angelman and Prader-Willi syndromes share a common chromosome 15 deletion but differ in parental origin of the deletion. American Journal of Medical Genetics, 32, 285–290.PubMedCrossRef
go back to reference Kuhlman, S. J., Lu, J., et al. (2010). Maturation of GABAergic inhibition promotes strengthening of temporally coherent inputs among convergent pathways. PLoS Computational Biology, 6(6), e1000797.PubMedCrossRef Kuhlman, S. J., Lu, J., et al. (2010). Maturation of GABAergic inhibition promotes strengthening of temporally coherent inputs among convergent pathways. PLoS Computational Biology, 6(6), e1000797.PubMedCrossRef
go back to reference Laurie, D. J., Wisden, W., et al. (1992). The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development. Journal of Neuroscience, 12(11), 4151–4172.PubMed Laurie, D. J., Wisden, W., et al. (1992). The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development. Journal of Neuroscience, 12(11), 4151–4172.PubMed
go back to reference Levitt, P., et al. (2004). Regulation of neocortical interneuron development and the implications for neurodevelopmental disorders. Trends in Neurosciences, 27, 400–406.PubMedCrossRef Levitt, P., et al. (2004). Regulation of neocortical interneuron development and the implications for neurodevelopmental disorders. Trends in Neurosciences, 27, 400–406.PubMedCrossRef
go back to reference Lewine, J. D., Andrews, R., et al. (1999). Magnetoencephalographic patterns of epileptiform activity in children with regressive autism spectrum disorders. Pediatrics, 104(3 Pt 1), 405–418.PubMedCrossRef Lewine, J. D., Andrews, R., et al. (1999). Magnetoencephalographic patterns of epileptiform activity in children with regressive autism spectrum disorders. Pediatrics, 104(3 Pt 1), 405–418.PubMedCrossRef
go back to reference Li, B. M., et al. (2011). Autism in Dravet syndrome: Prevalence, features, and relationship to the clinical characteristics of epilepsy and mental retardation. Epilepsy & Behavior, 21(3), 291–295.CrossRef Li, B. M., et al. (2011). Autism in Dravet syndrome: Prevalence, features, and relationship to the clinical characteristics of epilepsy and mental retardation. Epilepsy & Behavior, 21(3), 291–295.CrossRef
go back to reference Lotter, V. (1974). Factors related to outcome in autistic children. Journal of Autism and Schizophrenia, 4(3), 263–277.CrossRef Lotter, V. (1974). Factors related to outcome in autistic children. Journal of Autism and Schizophrenia, 4(3), 263–277.CrossRef
go back to reference Macdonald, R. L., Kang, J. Q., et al. (2010). Mutations in GABAA receptor subunits associated with genetic epilepsies. Journal of Physiology, 588(pt 11), 1861–1869.PubMedCrossRef Macdonald, R. L., Kang, J. Q., et al. (2010). Mutations in GABAA receptor subunits associated with genetic epilepsies. Journal of Physiology, 588(pt 11), 1861–1869.PubMedCrossRef
go back to reference Macdonald, R. L., & Olsen, R. W. (1994). GABAA receptor channels. Annual Review of Neuroscience, 17, 569–602.PubMedCrossRef Macdonald, R. L., & Olsen, R. W. (1994). GABAA receptor channels. Annual Review of Neuroscience, 17, 569–602.PubMedCrossRef
go back to reference Manent, J. B., Demarque, M., et al. (2005). A noncanonical release of GABA and glutamate modulates neuronal migration. Journal of Neuroscience, 25(19), 4755–4765.PubMedCrossRef Manent, J. B., Demarque, M., et al. (2005). A noncanonical release of GABA and glutamate modulates neuronal migration. Journal of Neuroscience, 25(19), 4755–4765.PubMedCrossRef
go back to reference Maric, D., Liu, Q. Y., et al. (2001). GABA expression dominates neuronal lineage progression in the embryonic rat neocortex and facilitates neurite outgrowth via GABA(A) autoreceptor/Cl- channels. The Journal of Neuroscience, 21(7), 2343–2360.PubMed Maric, D., Liu, Q. Y., et al. (2001). GABA expression dominates neuronal lineage progression in the embryonic rat neocortex and facilitates neurite outgrowth via GABA(A) autoreceptor/Cl- channels. The Journal of Neuroscience, 21(7), 2343–2360.PubMed
go back to reference Marrosu, F., Marrosu, G., et al. (1987). Paradoxical reactions elicited by diazepam in children with classic autism. Functional Neurology, 2(3), 355–361.PubMed Marrosu, F., Marrosu, G., et al. (1987). Paradoxical reactions elicited by diazepam in children with classic autism. Functional Neurology, 2(3), 355–361.PubMed
go back to reference McCall, M. A., Lukasiewicz, P. D., et al. (2002). Elimination of the rho1 subunit abolishes GABA(C) receptor expression and alters visual processing in the mouse retina. Journal of Neuroscience, 22(10), 4163–4174.PubMed McCall, M. A., Lukasiewicz, P. D., et al. (2002). Elimination of the rho1 subunit abolishes GABA(C) receptor expression and alters visual processing in the mouse retina. Journal of Neuroscience, 22(10), 4163–4174.PubMed
go back to reference McCauley, J. L., Olson, L. M., et al. (2004). A linkage disequilibrium map of the 1-Mb 15q12 GABA(A) receptor subunit cluster and association to autism. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 131B(1), 51–59.CrossRef McCauley, J. L., Olson, L. M., et al. (2004). A linkage disequilibrium map of the 1-Mb 15q12 GABA(A) receptor subunit cluster and association to autism. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 131B(1), 51–59.CrossRef
go back to reference McVicar, K. A., et al. (2005). Epileptiform EEG abnormalities in children with language regression. Neurology, 65(1), 129–131.PubMedCrossRef McVicar, K. A., et al. (2005). Epileptiform EEG abnormalities in children with language regression. Neurology, 65(1), 129–131.PubMedCrossRef
go back to reference Menold, M. M., Shao, Y., et al. (2001). Association analysis of chromosome 15 gabaa receptor subunit genes in autistic disorder. Journal of Neurogenetics, 15(3–4), 245–259.PubMedCrossRef Menold, M. M., Shao, Y., et al. (2001). Association analysis of chromosome 15 gabaa receptor subunit genes in autistic disorder. Journal of Neurogenetics, 15(3–4), 245–259.PubMedCrossRef
go back to reference Miano, S., & Ferri, R. (2010). Epidemiology and management of insomnia in children with autistic spectrum disorders. Paediatric Drugs, 12(2), 75–84.PubMedCrossRef Miano, S., & Ferri, R. (2010). Epidemiology and management of insomnia in children with autistic spectrum disorders. Paediatric Drugs, 12(2), 75–84.PubMedCrossRef
go back to reference Mori, T., Mori, K., et al. (2011). Evaluation of the GABAergic nervous system in autistic brain: (123)I-iomazenil SPECT study. Brain Developement. [Epub ahead of print]. Mori, T., Mori, K., et al. (2011). Evaluation of the GABAergic nervous system in autistic brain: (123)I-iomazenil SPECT study. Brain Developement. [Epub ahead of print].
go back to reference Numis, A. L., et al. (2011). Identification of risk factors for autism spectrum disorders in tuberous sclerosis complex. Neurology, 76(11), 981–987.PubMedCrossRef Numis, A. L., et al. (2011). Identification of risk factors for autism spectrum disorders in tuberous sclerosis complex. Neurology, 76(11), 981–987.PubMedCrossRef
go back to reference Oblak, A. L. et al. (2010). Reduced GABA(A) receptors and benzodiazepine binding sites in the posterior cingulate cortex and fusiform gyrus in autism. Brain Research, 1380:218–228. [Epub 2010 Sep 19]. Oblak, A. L. et al. (2010). Reduced GABA(A) receptors and benzodiazepine binding sites in the posterior cingulate cortex and fusiform gyrus in autism. Brain Research, 1380:218–228. [Epub 2010 Sep 19].
go back to reference Oblak, A., et al. (2009). Decreased GABAA receptors and benzodiazepine binding sites in the anterior cingulate cortex in autism. Autism Research, 2, 205–219.PubMedCrossRef Oblak, A., et al. (2009). Decreased GABAA receptors and benzodiazepine binding sites in the anterior cingulate cortex in autism. Autism Research, 2, 205–219.PubMedCrossRef
go back to reference O’Roak, B. J., & State, M. W. (2008). Autism genetics: Strategies, challenges, and opportunities. Autism Research, 1(1), 4–17.PubMedCrossRef O’Roak, B. J., & State, M. W. (2008). Autism genetics: Strategies, challenges, and opportunities. Autism Research, 1(1), 4–17.PubMedCrossRef
go back to reference Owens, D. F., & Kriegstein, A. R. (2002). Is there more to GABA than synaptic inhibition? Nature Reviews Neuroscience, 3(9), 715–727.PubMedCrossRef Owens, D. F., & Kriegstein, A. R. (2002). Is there more to GABA than synaptic inhibition? Nature Reviews Neuroscience, 3(9), 715–727.PubMedCrossRef
go back to reference Polleux, F., & Lauder, J. M. (2004). Toward a developmental neurobiology of autism. Mental Retardation and Developmental Disabilities Research Reviews, 10, 303–317.PubMedCrossRef Polleux, F., & Lauder, J. M. (2004). Toward a developmental neurobiology of autism. Mental Retardation and Developmental Disabilities Research Reviews, 10, 303–317.PubMedCrossRef
go back to reference Ponde, M. P., Novaes, C. M., et al. (2010). Frequency of symptoms of attention deficit and hyperactivity disorder in autistic children. Arquivos de Neuro-Psiquiatria, 68(1), 103–106.PubMedCrossRef Ponde, M. P., Novaes, C. M., et al. (2010). Frequency of symptoms of attention deficit and hyperactivity disorder in autistic children. Arquivos de Neuro-Psiquiatria, 68(1), 103–106.PubMedCrossRef
go back to reference Powell, E. M., et al. (2003). Genetic disruption of cortical interneuron development causes region- and GABA cell type-specific deficits, epilepsy, and behavioral dysfunction. Journal of Neuroscience, 23(2), 622–631.PubMed Powell, E. M., et al. (2003). Genetic disruption of cortical interneuron development causes region- and GABA cell type-specific deficits, epilepsy, and behavioral dysfunction. Journal of Neuroscience, 23(2), 622–631.PubMed
go back to reference Represa, A., & Ben Ari, Y. (2005). Trophic actions of GABA on neuronal development. Trends in Neurosciences, 28(6), 278–283.PubMedCrossRef Represa, A., & Ben Ari, Y. (2005). Trophic actions of GABA on neuronal development. Trends in Neurosciences, 28(6), 278–283.PubMedCrossRef
go back to reference Rubenstein, J. L. (2010). Three hypotheses for developmental defects that may underlie some forms of autism spectrum disorder. Current Opinion in Neurology, 23, 118–123.PubMedCrossRef Rubenstein, J. L. (2010). Three hypotheses for developmental defects that may underlie some forms of autism spectrum disorder. Current Opinion in Neurology, 23, 118–123.PubMedCrossRef
go back to reference Samaco, R. C., Hogart, A., et al. (2005). Epigenetic overlap in autism-spectrum neurodevelopmental disorders: MECP2 deficiency causes reduced expression of UBE3A and GABRB3. Human Molecular Genetics, 14(4), 483–492.PubMedCrossRef Samaco, R. C., Hogart, A., et al. (2005). Epigenetic overlap in autism-spectrum neurodevelopmental disorders: MECP2 deficiency causes reduced expression of UBE3A and GABRB3. Human Molecular Genetics, 14(4), 483–492.PubMedCrossRef
go back to reference Sander, J. W., & Shorvon, S. D. (1996). Epidemiology of the epilepsies. Journal of Neurology, Neurosurgery and Psychiatry, 61, 433–443.CrossRef Sander, J. W., & Shorvon, S. D. (1996). Epidemiology of the epilepsies. Journal of Neurology, Neurosurgery and Psychiatry, 61, 433–443.CrossRef
go back to reference Sasaki, M., et al. (2010). Brain perfusion SPECT and EEG findings in children with autism spectrum disorders and medically intractable epilepsy. Brain Developement, 32(9), 776–782.CrossRef Sasaki, M., et al. (2010). Brain perfusion SPECT and EEG findings in children with autism spectrum disorders and medically intractable epilepsy. Brain Developement, 32(9), 776–782.CrossRef
go back to reference Schumann, C. M., Bloss, C. S., et al. (2010). Longitudinal magnetic resonance imaging study of cortical development through early childhood in autism. Journal of Neuroscience, 30(12), 4419–4427.PubMedCrossRef Schumann, C. M., Bloss, C. S., et al. (2010). Longitudinal magnetic resonance imaging study of cortical development through early childhood in autism. Journal of Neuroscience, 30(12), 4419–4427.PubMedCrossRef
go back to reference Schumann, C. M., Hamstra, J., et al. (2004). The amygdala is enlarged in children but not adolescents with autism; the hippocampus is enlarged at all ages. Journal of Neuroscience, 24(28), 6392–6401.PubMedCrossRef Schumann, C. M., Hamstra, J., et al. (2004). The amygdala is enlarged in children but not adolescents with autism; the hippocampus is enlarged at all ages. Journal of Neuroscience, 24(28), 6392–6401.PubMedCrossRef
go back to reference Sisodiya, S. M., & Mefford, H. C. (2011). Genetic contribution to common epilepsies. Current Opinion in Neurology, 24(2), 140–145.PubMedCrossRef Sisodiya, S. M., & Mefford, H. C. (2011). Genetic contribution to common epilepsies. Current Opinion in Neurology, 24(2), 140–145.PubMedCrossRef
go back to reference Smith, K. R., & Matson, J. L. (2010). Psychopathology: Differences among adults with intellectually disabled, comorbid autism spectrum disorders and epilepsy. Research in Developmental Disabilities, 31(3), 743–749.PubMedCrossRef Smith, K. R., & Matson, J. L. (2010). Psychopathology: Differences among adults with intellectually disabled, comorbid autism spectrum disorders and epilepsy. Research in Developmental Disabilities, 31(3), 743–749.PubMedCrossRef
go back to reference Spence, S. J., & Schneider, M. T. (2009). The role of epilepsy and epileptiform EEGs in autism spectrum disorders. Pediatric Research, 65(6), 599–606.PubMedCrossRef Spence, S. J., & Schneider, M. T. (2009). The role of epilepsy and epileptiform EEGs in autism spectrum disorders. Pediatric Research, 65(6), 599–606.PubMedCrossRef
go back to reference Steinlein, O. K., & Bertrand, D. (2010). Nicotinic receptor channelopathies and epilepsy. Pflugers Archiv, 460(2), 495–503.PubMedCrossRef Steinlein, O. K., & Bertrand, D. (2010). Nicotinic receptor channelopathies and epilepsy. Pflugers Archiv, 460(2), 495–503.PubMedCrossRef
go back to reference Suzuki, T., Delgado-Escueta, A. V., et al. (2004). Mutations in EFHC1 cause juvenile myoclonic epilepsy. Nature Genetics, 36(8), 842–849.PubMedCrossRef Suzuki, T., Delgado-Escueta, A. V., et al. (2004). Mutations in EFHC1 cause juvenile myoclonic epilepsy. Nature Genetics, 36(8), 842–849.PubMedCrossRef
go back to reference Suzuki, T., Inoue, I., et al. (2008). Sequential expression of Efhc1/myoclonin1 in choroid plexus and ependymal cell cilia. Biochemical and Biophysical Research Communications, 367(1), 226–233.PubMedCrossRef Suzuki, T., Inoue, I., et al. (2008). Sequential expression of Efhc1/myoclonin1 in choroid plexus and ependymal cell cilia. Biochemical and Biophysical Research Communications, 367(1), 226–233.PubMedCrossRef
go back to reference Taylor, D. C., et al. (1999). Autistic spectrum disorders in childhood epilepsy surgery candidates. European Child and Adolescent Psychiatry, 8(3), 189–192.PubMedCrossRef Taylor, D. C., et al. (1999). Autistic spectrum disorders in childhood epilepsy surgery candidates. European Child and Adolescent Psychiatry, 8(3), 189–192.PubMedCrossRef
go back to reference Toering, S. T., Boer, K., et al. (2009). Expression patterns of synaptic vesicle protein 2A in focal cortical dysplasia and TSC-cortical tubers. Epilepsia, 50(6), 1409–1418.PubMedCrossRef Toering, S. T., Boer, K., et al. (2009). Expression patterns of synaptic vesicle protein 2A in focal cortical dysplasia and TSC-cortical tubers. Epilepsia, 50(6), 1409–1418.PubMedCrossRef
go back to reference Tuchman, R., Cuccaro, M., et al. (2010). Autism and epilepsy: Historical perspective. Brain Development, 32(9), 709–718.PubMedCrossRef Tuchman, R., Cuccaro, M., et al. (2010). Autism and epilepsy: Historical perspective. Brain Development, 32(9), 709–718.PubMedCrossRef
go back to reference Veenstra-VanderWeele, J., & Cook, E. H., Jr. (2004). Molecular genetics of autism spectrum disorder. Molecular Psychiatry, 9(9), 819–832.PubMedCrossRef Veenstra-VanderWeele, J., & Cook, E. H., Jr. (2004). Molecular genetics of autism spectrum disorder. Molecular Psychiatry, 9(9), 819–832.PubMedCrossRef
go back to reference Vincent, J. B., Horike, S. I., et al. (2006). An inversion inv(4)(p12-p15.3) in autistic siblings implicates the 4p GABA receptor gene cluster. Journal of Medical Genetics, 43(5), 429–434.PubMedCrossRef Vincent, J. B., Horike, S. I., et al. (2006). An inversion inv(4)(p12-p15.3) in autistic siblings implicates the 4p GABA receptor gene cluster. Journal of Medical Genetics, 43(5), 429–434.PubMedCrossRef
go back to reference Wagstaff, J., Chaillet, J. R., et al. (1991). The GABAA receptor beta 3 subunit gene: Characterization of a human cDNA from chromosome 15q11q13 and mapping to a region of conserved synteny on mouse chromosome 7. Genomics, 11(4), 1071–1078.PubMedCrossRef Wagstaff, J., Chaillet, J. R., et al. (1991). The GABAA receptor beta 3 subunit gene: Characterization of a human cDNA from chromosome 15q11q13 and mapping to a region of conserved synteny on mouse chromosome 7. Genomics, 11(4), 1071–1078.PubMedCrossRef
go back to reference Wagstaff, J., Knoll, J. H., et al. (1992). Maternal but not paternal transmission of 15q11-13-linked nondeletion Angelman syndrome leads to phenotypic expression. Nature Genetics, 1(4), 291–294.PubMedCrossRef Wagstaff, J., Knoll, J. H., et al. (1992). Maternal but not paternal transmission of 15q11-13-linked nondeletion Angelman syndrome leads to phenotypic expression. Nature Genetics, 1(4), 291–294.PubMedCrossRef
go back to reference Wang, D. D., & Kriegstein, A. R. (2009). Defining the role of GABA in cortical development. Journal of Physiology, 587(Pt 9), 1873–1879.PubMedCrossRef Wang, D. D., & Kriegstein, A. R. (2009). Defining the role of GABA in cortical development. Journal of Physiology, 587(Pt 9), 1873–1879.PubMedCrossRef
go back to reference Wang, D. D., & Kriegstein, A. R. (2011). Blocking early GABA depolarization with bumetanide results in permanent alterations in cortical circuits and sensorimotor gating deficits. Cerebral Cortex, 21(3), 574–587.PubMedCrossRef Wang, D. D., & Kriegstein, A. R. (2011). Blocking early GABA depolarization with bumetanide results in permanent alterations in cortical circuits and sensorimotor gating deficits. Cerebral Cortex, 21(3), 574–587.PubMedCrossRef
go back to reference Wegiel, J., Kuchna, I., et al. (2010). The neuropathology of autism: Defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathologica, 119(6), 755–770.PubMedCrossRef Wegiel, J., Kuchna, I., et al. (2010). The neuropathology of autism: Defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathologica, 119(6), 755–770.PubMedCrossRef
go back to reference Weiss, L. A. (2009). Autism genetics: Emerging data from genome-wide copy-number and single nucleotide polymorphism scans. Expert Review of Molecular Diagnostics, 9(8), 795–803.PubMedCrossRef Weiss, L. A. (2009). Autism genetics: Emerging data from genome-wide copy-number and single nucleotide polymorphism scans. Expert Review of Molecular Diagnostics, 9(8), 795–803.PubMedCrossRef
go back to reference Weiss, L. A., Arking, D. E., et al. (2009). A genome-wide linkage and association scan reveals novel loci for autism. Nature, 461(7265), 802–808.PubMedCrossRef Weiss, L. A., Arking, D. E., et al. (2009). A genome-wide linkage and association scan reveals novel loci for autism. Nature, 461(7265), 802–808.PubMedCrossRef
go back to reference Weiss, L. A., Escayg, A., et al. (2003). Sodium channels SCN1A, SCN2A and SCN3A in familial autism. Molecular Psychiatry, 8(2), 186–194.PubMedCrossRef Weiss, L. A., Escayg, A., et al. (2003). Sodium channels SCN1A, SCN2A and SCN3A in familial autism. Molecular Psychiatry, 8(2), 186–194.PubMedCrossRef
go back to reference White, R., Hua, Y., et al. (2001). Selective alterations in glutamate and GABA receptor subunit mRNA expression in dysplastic neurons and giant cells of cortical tubers. Annals of Neurology, 49(1), 67–78.PubMedCrossRef White, R., Hua, Y., et al. (2001). Selective alterations in glutamate and GABA receptor subunit mRNA expression in dysplastic neurons and giant cells of cortical tubers. Annals of Neurology, 49(1), 67–78.PubMedCrossRef
go back to reference Windpassinger, C., Kroisel, P. M., et al. (2002). The human gamma-aminobutyric acid A receptor delta (GABRD) gene: Molecular characterisation and tissue-specific expression. Gene, 292(1–2), 25–31.PubMedCrossRef Windpassinger, C., Kroisel, P. M., et al. (2002). The human gamma-aminobutyric acid A receptor delta (GABRD) gene: Molecular characterisation and tissue-specific expression. Gene, 292(1–2), 25–31.PubMedCrossRef
go back to reference Yoo, H. K., Chung, S., et al. (2009). Microsatellite marker in gamma—aminobutyric acid—a receptor beta 3 subunit gene and autism spectrum disorders in Korean trios. Yonsei Medical Journal, 50(2), 304–306.PubMedCrossRef Yoo, H. K., Chung, S., et al. (2009). Microsatellite marker in gamma—aminobutyric acid—a receptor beta 3 subunit gene and autism spectrum disorders in Korean trios. Yonsei Medical Journal, 50(2), 304–306.PubMedCrossRef
go back to reference Yu, F. H., Mantegazza, M., et al. (2006). Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nature Neuroscience, 9(9), 1142–1149.PubMedCrossRef Yu, F. H., Mantegazza, M., et al. (2006). Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nature Neuroscience, 9(9), 1142–1149.PubMedCrossRef
go back to reference Zhou, Y. D., Lee, S., et al. (2009). Arrested maturation of excitatory synapses in autosomal dominant lateral temporal lobe epilepsy. Nature Medicine, 15(10), 1208–1214.PubMedCrossRef Zhou, Y. D., Lee, S., et al. (2009). Arrested maturation of excitatory synapses in autosomal dominant lateral temporal lobe epilepsy. Nature Medicine, 15(10), 1208–1214.PubMedCrossRef
Metagegevens
Titel
A Common Susceptibility Factor of Both Autism and Epilepsy: Functional Deficiency of GABAA Receptors
Auteurs
Jing-Qiong Kang
Gregory Barnes
Publicatiedatum
01-01-2013
Uitgeverij
Springer US
Gepubliceerd in
Journal of Autism and Developmental Disorders / Uitgave 1/2013
Print ISSN: 0162-3257
Elektronisch ISSN: 1573-3432
DOI
https://doi.org/10.1007/s10803-012-1543-7

Andere artikelen Uitgave 1/2013

Journal of Autism and Developmental Disorders 1/2013 Naar de uitgave