Skip to main content
Log in

Metabolic and Hormonal Responses to Exercise in Children and Adolescents

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Ethical and methodological factors limit the availability of data on metabolic and hormonal responses to exercise in children and adolescents. Despite this, it has been reported that young individuals show age-dependent responses to short and long term exercise when compared with adults.

Adenosine triphosphate (ATP) and phosphocreatine stores are not age-dependent in children and adolescents. However, phosphorus-31 nuclear magnetic resonance spectroscopy (31PNMR) studies showed smaller reductions in intramuscular pH in children and adolescents during high intensity exercise than adults. Muscle glycogen levels at rest are less important in children, but during adolescence these reach levels observed in adults.

Immaturity of anaerobic metabolism in children is a major consideration, and there are several possible reasons for this reduced glycolytic activity. There appear to be higher proportions of slow twitch (type I) fibres in the vastus lateralis part of the quadriceps in children than in untrained adults, and anaerobic glycolytic ATP rephosphorylation may be reduced in young individuals during high intensity exercise. Reduced activity of phosphofructokinase-1 and lactate dehydrogenase enzymes in prepubertal children could also explain the lower glycolytic capacity and the limited production of muscle lactate relative to adults. These observations may be related to reduced sympathetic responses to exhaustive resistance exercise in young people.

In contrast, children and adolescents are well adapted to prolonged exercise of moderate intensity. Growth and maturation induce increases in muscle mass, with proliferation of mitochondria and contractile proteins. However, substrate utilisation during exercise differs between children and adults, with metabolic and hormonal adaptations being suggested. Lower respiratory exchange ratio values are often observed in young individuals during prolonged moderate exercise. Data indicate that children rely more on fat oxidation than do adults, and increased free fatty acid mobilisation, glycerol release and growth hormone increases in preadolescent children support this hypothesis.

Plasma glucose responses during prolonged exercise are generally comparable in children and adults. When glucose is ingested at the beginning of moderate exercise, plasma glucose levels are higher in children than in adults, but this may be caused by decreased insulin sensitivity during the peripubertal period (as shown by glucose: insulin ratios).

Conclusions: Children are better adapted to aerobic exercise because their energy expenditure appears to rely more on oxidative metabolism than is the case in adults. Glycolytic activity is age-dependent, and the relative proportion of fat utilisation during prolonged exercise appears higher in children than in adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lac G, Duché P, Falgairette G, et al. Adrenal androgen profiles in saliva throughout puberty in both sexes. In: Coudert J, Van Praagh E, editors. Pediatric work physiology. XVI. Children and exercise. Paris: Masson, 1992: 221–3

    Google Scholar 

  2. Sizonenko PC, Paunier L. Hormonal changes in puberty III: correlation of plasma dehydroepiandrosterone, testosterone, FSH and LH with stages of puberty and bone age in normal boys and girls and in patients with Addison’s disease or hypogonadism or with premature or late adrenarche. J Clin Endocrinol Metab 1975; 41 (5): 894–904

    PubMed  CAS  Google Scholar 

  3. Martha PM, Gorman KM, Blizzard RM, et al. Endogenous growth hormone secretion and clearance rates in normal boys, as determined by deconvolution analysis: relationship to age pubertal status and body mass. J Clin Endocrinol Metab 1992; 74: 336–44

    PubMed  CAS  Google Scholar 

  4. Bar-Or O. Pediatric sports medicine for the practitioner. New York: Springer Verlag, 1983

    Google Scholar 

  5. Rowland TW. Developmental aspects of physiological function relating to aerobic exercise in children. Sports Med 1990; 10 (4): 255–66

    PubMed  CAS  Google Scholar 

  6. Armstrong N, Welsman JR. Developmental aspects of aerobic fitness in children and adolescents. In: Holloszy JO, editor. Exercise and sport sciences reviews. Baltimore (MD): Williams & Wilkins, 1994: 435–76

    Google Scholar 

  7. Keizer H, Poortman J, Bunnik GS. Influence of physical exercise on sex-hormone metabolism. J Appl Physiol 1980; 48 (5): 765–9

    PubMed  CAS  Google Scholar 

  8. Wilkerson JE, Horvath SM, Gutin B. Plasma testosterone during treadmill running. J Appl Physiol 1980; 49 (2): 249-53

    PubMed  CAS  Google Scholar 

  9. Lemon PWR, Nagle FJ. Effect of exercise on protein and amino acid metabolism. Med Sci Sports Exerc 1981; 13: 141–9

    PubMed  CAS  Google Scholar 

  10. Wilmore JH, Costill DL. Physiology of sport and exercise. 2nd ed. Champaign (IL): Human Kinetics, 1999

    Google Scholar 

  11. Sapega AA, Sokolow DP, Graham TJ, et al. Phosphorus nuclear magnetic resonance: a non-invasive technique for the study of muscle bioenergetics during exercise. Med Sci Sports Exerc 1987; 19 (4): 410–20

    PubMed  CAS  Google Scholar 

  12. Zanconato S, Buchthal S, Barstow TJ, et al. 31P-magnetic resonance spectroscopy of leg muscle metabolism during exercise in children and adults. J Appl Physiol 1993 May; 74 (5): 2214–8

    PubMed  CAS  Google Scholar 

  13. Kuno S, Miyamaru M, Itai J. Muscle energetics during exercise of elite sprinter in children by 31PNMR. Med Sci Sports Exerc 1993; 25 Suppl. 5: S175

    Google Scholar 

  14. Kuno S, Takahashi H, Fujimoto K, et al. Muscle metabolism during exercise using phosphorus-31 nuclear magnetic resonance spectroscopy in adolescents. Eur J Appl Physiol Occup Physiol 1995; 70 (4): 301–4

    PubMed  CAS  Google Scholar 

  15. Petersen SR, Gaul CA, Stanton NM, et al. Skeletal muscle metabolism during short-term, high-intensity exercise in prepubertal and pubertal girls. J Appl Physiol 1999; 87 (6): 2151–6

    PubMed  CAS  Google Scholar 

  16. Cooper DM. Development of the oxygen transport system in normal children. In: Bar-Or O, editor. Advances in pediatric sport sciences: biological issues. 3. Champaign (IL): Human Kinetics, 1989: 67–100

    Google Scholar 

  17. Williams CA. Children’s and adolescents’ anaerobic performance during cycle ergometry. Sports Med 1997; 24: 227–40

    PubMed  CAS  Google Scholar 

  18. Falize J. Le développement moteur de l’enfant: perspectives d’application. In: De Potter JC, Levarlet H, editors. Développement moteur et éducation. Brussels: Presses Universitaires de Bruxelles, 1984: 47–66

    Google Scholar 

  19. Falgairette G, Bedu M, Fellmann N, et al. Bioenergetic profile in 144 boys age from 6 to 15 years with special reference to sexual maturation. Eur J Appl Physiol Occup Physiol 1991; 62 (3): 151–6

    PubMed  CAS  Google Scholar 

  20. Duché P, Falgairette G, Bedu M, et al. Longitudinal approach of bioenergetic profile in boys before and during puberty. In: Coudert J, Van Praagh E, editors. Pediatric work physiology. XVI. Children and exercise. Paris: Masson, 1992: 43–5

    Google Scholar 

  21. Mercier B, Mercier J, Granier P, et al. Maximal anaerobic power: relationship to anthropometric characteristics during growth. Int J Sports Med 1992; 13: 21–6

    PubMed  CAS  Google Scholar 

  22. Allen RE, Merkel RA, Young RB. Cellular aspects of muscle growth: myogenic cell proliferation. J Anim Sci 1979; 49 (1): 115–27

    PubMed  CAS  Google Scholar 

  23. Colling-Saltin AS. Enzyme histochemistry on skeletal muscle of the human foetus. J Neurol Sci 1978; 39: 169–85

    PubMed  CAS  Google Scholar 

  24. Elder GCB, Kakukas BA. Histochemical and contractile property changes during human muscle development. Muscle Nerve 1993; 16 (11): 1246–53

    PubMed  CAS  Google Scholar 

  25. Vogler C, Bove KE. Morphology of skeletal muscle in children. Arch Pathol Lab Med 1985; 109: 238–42

    PubMed  CAS  Google Scholar 

  26. Bell RD, MacDougall JD, Billeter R, et al. Muscle fibres types and morphometric analysis of skeletal muscle in six years old children. Med Sci Sports Exerc 1980; 12 (1): 28–31

    PubMed  CAS  Google Scholar 

  27. Fournier M, Ricci J, Taylor AW, et al. Skeletal muscle adaptation in adolescent boys: sprint and endurance training and detraining. Med Sci Sports Exerc 1982; 14 (6): 453–6

    PubMed  CAS  Google Scholar 

  28. Mero A, Jaakkola L, Komi PV. Relationships between muscle characteristics and physical performance capacity in trained athletic boys. J Sports Sci 1991; 9: 161–71

    PubMed  CAS  Google Scholar 

  29. Eriksson O, Saltin B. Muscle metabolism during exercise in boys aged 11 to 16 years compared to adults. Acta Paediatr Belg 1974; 28 Suppl.: 257–65

    PubMed  CAS  Google Scholar 

  30. Gollnick PD, Armstrong RB, Saubert CW, et al. Enzyme activity and fiber composition in skeletal muscle of untrained and trained men. J Appl Physiol 1972; 33 (3): 312–9

    PubMed  CAS  Google Scholar 

  31. Hedberg G, Jansson E. Skeletal muscle fibre distribution, capacity and interest in different physical activities among students in high school [Swedish]. Pedagogiska Rapporter 1976: 54

    Google Scholar 

  32. du Plessis M, Smit P, du Plessis L, et al. The composition of muscle fibers in a group of adolescents. In: Binkhorst RA, Kemper HCG, Saris WHH, editors. Children and exercise. XI. Champaign (IL): Human Kinetics, 1985: 323–8

    Google Scholar 

  33. Houmard JA, Smith R, Jendrasiak GL. Relationship between MRI relaxation time and muscle fibre composition. J Appl Physiol 1995; 78: 807–9

    PubMed  CAS  Google Scholar 

  34. Parkkola R, Alanen A, Klimo H, et al. MR relaxation times and fiber type predominance of the psoas and multifidus muscle. Acta Radiol 1993; 34: 16–9

    PubMed  CAS  Google Scholar 

  35. Kuno S, Katsuta S, Inouye T, et al. Relationship between MR relaxation time and muscle fiber composition. Radiology 1988; 169: 657–68

    Google Scholar 

  36. Colling-Saltin AS. Some quantitative biochemical evaluation of developing skeletal muscle in the human foetus. J Neurol Sci 1978; 39: 187–98

    PubMed  CAS  Google Scholar 

  37. Eriksson BO, Karlsson J, Saltin B. Muscle metabolites during exercise in pubertal boys. Acta Paediatr Scand 1971; 217 Suppl.: 154–7

    CAS  Google Scholar 

  38. Bougnères PF. Rôle des substrats lipidiques dans l’adaptation au jeune du nouveau-né et de l’enfant. J Annu Diabetol Hotel Dieu 1988: 303–14

    Google Scholar 

  39. Schiffrin A, Colle E. Hypoglycemia. In: Collin R, Ducharme JR, editors. Pediatric endocrinology. New-York: Raven Press, 1989: 649–73

    Google Scholar 

  40. Eriksson BO, Gollnick PD, Saltin B. Muscle metabolism and enzyme activities after training in boys 11–13 years old. Acta Physiol Scand 1973; 87: 485–97

    PubMed  CAS  Google Scholar 

  41. Haralambie G. Enzyme activities in skeletal muscle of 13–15 years old adolescents. Bull Eur Physiopathol Respir 1982; 18 (1): 65–74

    PubMed  CAS  Google Scholar 

  42. Mero A. Measurement of aerobic and anaerobic performance capacity in young boys. In: Coudert J, Van Praagh E, editors. Pediatric work physiology. XVI. Children and exercise. Paris: Masson, 1992: 19–21

    Google Scholar 

  43. Eriksson BO. Physical training, oxygen supply and muscle metabolism in 11–13 year old boys. Acta Physiol Scand 1972; 384 Suppl.: 1–48

    CAS  Google Scholar 

  44. Berg A, Kim SS, Keul J. Skeletal muscle enzyme activities in healthy young subjects. Int J Sports Med 1986; 4: 236–9

    Google Scholar 

  45. Falgairette G, Bedu M, Fellmann N, et al. Modifications of aerobic and anaerobic metabolism in active boys during puberty. In: Beunen G, Ghesquiere J, Reybrouk T, et al., editors. Children and exercise. IV. Stuttgart: Ferdinand Enke Verlag, 1990: 42–9

    Google Scholar 

  46. Rostein A, Dofan R, Bar-Or O, et al. Effect of training on anaerobic threshold, maximal aerobic power and anaerobic performance of preadolescent boys. Int J Sports Med 1986; 7 (5): 281–6

    Google Scholar 

  47. Rilling JK, Worthman CM, Campell BC, et al. Ratios of plasma and salivary testosterone throughout puberty: production versus bioavailability. Steroids 1996; 61 (6): 374–8

    PubMed  CAS  Google Scholar 

  48. Crielaard JM, Pirnay F, Franchimont P. Croissance et exercice anaérobie lactique. In: Benezis C, Simeray J, Simon L, editors. L’enfant, l’adolescent et le sport, actualités en médecine du sport. Paris: Masson, 1986: 33–51

    Google Scholar 

  49. Von Diter H, Nowacki P, Simai E, et al. Das Verhalten des Säure-Basen-Haushalts nach erschöpfender Belastung bei untrainierten und tranierten Jungen und Mädchenim Vergleich zu Leistungssportlern. Sportarzt Sportmed 1977; 28: 45–8

    Google Scholar 

  50. Matejkova J, Kroprikova Z, Placheta Z. Changes in acid-base balance after maximal exercise. In: Placheta Z, editor. Youth and physical activity. Purkyne (Czechoslovakia): JE University, 1980: 191–9

    Google Scholar 

  51. Galbo H. Autonomic neuroendocrine responses to exercise. Scand J Sports Sci 1986; 8 (1): 3–17

    Google Scholar 

  52. Richter EA, Ruderman NB, Galbo H. Alpha and beta adrenergic effects on metabolism in contracting perfused muscle. Acta Physiol Scand 1982; 116: 215–22

    PubMed  CAS  Google Scholar 

  53. Spriet L, Ren JM, Hultman E. Epinephrine infusion enhances muscle glycogenolysis during prolonged electrical stimulation. J Appl Physiol 1988; 64: 1439–44

    PubMed  CAS  Google Scholar 

  54. Kindermann W, Schnabel A, Schmitt WM, et al. Catecholamines, growth hormone, cortisol, insulin and sex hormone in anaerobic and aerobic exercise. Eur J Appl Physiol 1982; 49: 389–99

    CAS  Google Scholar 

  55. Lehmann M, Keul J, Da Prada M, et al. Plasmakatecholamine, glucose, lactat und sauerstoffaufnahmefähikeit von kindern bei aeroben und anaeroben bealastungen. Dtsch Z fur Sportmed 1980; 8: 230–6

    Google Scholar 

  56. Pullinen T, Mero A, Mac Donald E, et al. Plasma catecholamine and serum testosterone responses to four units of resistance exercise in young and adult male athletes. Eur J Appl Physiol 1998; 77: 413–20

    CAS  Google Scholar 

  57. Boobis LH, Williams C, Wooton SA. Influence of sprint training on muscle metabolism during brief maximal exercise in man [abstract]. J Physiol (Lond) 1983; 342: 36–7

    Google Scholar 

  58. Nevill ME, Boobis LH, Brooks S, et al. Effect of training on muscle metabolism during treadmill sprinting. J Appl Physiol 1989; 67: 2376–82

    PubMed  CAS  Google Scholar 

  59. Eriksson BO. Muscle metabolism in children: a review. Acta Paediatr Scand 1980; 283 Suppl.: 20–8

    CAS  Google Scholar 

  60. Thorstensson A, Sjodin B, Karlsson J. Enzyme activities and muscle strength after sprint training in man. Acta Physiol Scand 1975; 94: 313–8

    PubMed  CAS  Google Scholar 

  61. Hebestreit H, Mimura k, Bar-Or O. Recovery of anaerobic muscle power following 30s supramaximal exercise: comparison between boys and men. J Appl Physiol 1993; 74: 2875–80

    PubMed  CAS  Google Scholar 

  62. Hebestreit H, Meyer F, Htay-Htay G, et al. Plasma electrolyte and hydrogen ion levels following a 30s high intensity task: boys vs men [abstract no. 1183]. Med Sci Sports Exerc 1994; 26 Suppl.: S210

    Google Scholar 

  63. Astrand PO, Rodhal K. Textbook of work physiology. New York: McGraw-Hill, 1986

    Google Scholar 

  64. Martinez LR, Haymes EM. Substrate utilization during treadmill running in prepubertal girls and women. Med Sci Sports Exerc 1992; 24 (9): 975–83

    PubMed  CAS  Google Scholar 

  65. Asano K, Hirakoba K. Respiratory and circulatory adaptation during prolonged exercise in 10- to 12-year-old children and in adults. In: Imaarinen J, Vaalimaki I, editors. Children and sport. Berlin: Springer-Verlag, 1984: 119–28

    Google Scholar 

  66. Eynde BV, Van Gerven D, Vienne D, et al. Endurance fitness and peak height velocity in Belgian boys. In: Oseid S, Caarlsen K, editors. Children and exercise. XIII. Champaign (IL): Human Kinetics, 1989: 19–27

    Google Scholar 

  67. Robinson S. Experimental studies of physical fitness in relation to age. Int Z Angew Physiol Einschl Arbeitphysiol 1938; 10: 251–323

    Google Scholar 

  68. Morse M, Schltz FW, Cassels E. Relation of age to physiological responses of the older boys (10–17 years) to exercise. J Appl Physiol 1949; 1: 638–709

    Google Scholar 

  69. Montoye H. Age and oxygen utilization during submaximal treadmill exercise in males. J Gerontol 1982; 37: 396–402

    PubMed  CAS  Google Scholar 

  70. Rowland TW, Auchinachie JA, Keenan TJ, et al. Physiological responses to treadmill running in adult and prepubertal males. Int J Sports Med 1987; 8: 292–7

    PubMed  CAS  Google Scholar 

  71. Rowland TW, Rimany TA. Physiological responses to prolonged exercise in premenarcheal and adult females. Pediatr Exerc Sci 1995; 7: 183–91

    Google Scholar 

  72. Macek M, Vavra J, Novosadova J. Prolonged exercise in prepubertal boys II. Changes in plasma volume and in some blood constituents. Eur J Appl Physiol 1976; 35: 299–303

    CAS  Google Scholar 

  73. Van Beaumont W. Evaluation of hemoconcentration from hematocrit measurements. J Appl Physiol 1972; 32: 712–3

    PubMed  Google Scholar 

  74. Hill DB, Costill DL. Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol 1974; 37: 299–303

    Google Scholar 

  75. Fahey TD, Del Valle-Zuris, Oehlsen G, et al. Pubertal stage differences in hormonal and hematological responses to maximal exercise in males. J Appl Physiol 1979; 46 (4): 823–7

    PubMed  CAS  Google Scholar 

  76. Astrand PO, Saltin B. Plasma and red cell volume after prolonged severe exercise. J Appl Physiol 1964; 19: 829–32

    PubMed  CAS  Google Scholar 

  77. Flandrois R. Conséquences de l’exercice de longue durée sur l’hydratation de l’organisme: réactions hormonales. In: Lacour JR, editor. Comptes-rendus du colloque de Saint-Etienne. Facteurs limitant l’endurance humaine. Paris: Masson, 1977: 38–42

    Google Scholar 

  78. Melin B, Eclache JP, Geelen G, et al. Plasma AVP, neurophysin, renin activity and aldosterone during submaximal exercise performed until exhaustion in trained and untrained men. Eur J Appl 1980; 44: 141–51

    CAS  Google Scholar 

  79. Delamarche P, Monnier M, Gratas-Delamarche A, et al. Glucose and free fatty acid utilization during prolonged exercise in prepubertal boys in relation to catecholamine responses. Eur J Appl Physiol 1992; 65: 66–72

    CAS  Google Scholar 

  80. Davies CTM. Thermal responses to exercise in children. Ergonomics 1981; 48: 55–61

    Google Scholar 

  81. Delamarche P, Bittel J, Lacour JR, et al. Thermoregulation at rest and during exercise in prepubertal boys. Eur J Appl Physiol 1990; 60: 436–40

    CAS  Google Scholar 

  82. Sjodin B, Schele R, Karlsson J, et al. The physiological background of onset blood lactate accumulation. International series on sports sciences. Vol. 12. Exercise and sport biology. Champaign (IL): Human Kinetics, 1982

    Google Scholar 

  83. Sjodin B, Jacobs I. Onset of blood lactate accumulation and marathon running performance. Int J Sport Med 1981; 2: 23–6

    CAS  Google Scholar 

  84. Sjodin B, Jacobs I, Svedenhag J. Changes in onset blood lactate accumulation and muscle enzymes after training at OBLA. Eur J Appl Physiol 1982; 49: 45–57

    CAS  Google Scholar 

  85. Mocellin R, Heusgen M, Korsten-Reck U. Maximal steady state blood lactate levels in 11-year-old boys. Eur J Pediatr 1990; 149: 771–3

    PubMed  CAS  Google Scholar 

  86. Mocellin R, Heusgen M, Gildein HP. Anaerobic threshold and maximal steady-state blood lactate in prepubertal boys. Eur J Appl Physiol 1991; 62: 56–60

    CAS  Google Scholar 

  87. Williams JR, Armstrong N, Kirby BJ. The 4mM blood lactate level as an index of exercise performance in 11–13 year old children. J Sports Sci 1990; 8: 139–47

    PubMed  CAS  Google Scholar 

  88. Tolfrey K, Armstrong N. Child-adult differences in whole blood lactate responses to incremental treadmill exercise. Br J Sports Med 1995; 29 (3): 196–9

    PubMed  CAS  Google Scholar 

  89. Farrel PA, Wilmore JH, Coyle EF, et al. Plasma lactate accumulation and distance running performance. Med Sci Sports Exerc 1979; 11: 338–44

    Google Scholar 

  90. Amiel S, Sherwin R, Simonson D, et al. Impaired insulin action in puberty a contributing factor to poor glycemic control in adolescents with diabetes. N Engl J Med 1986; 315: 215–9

    PubMed  CAS  Google Scholar 

  91. Bloch C, Clemons P, Sperling M. Puberty decreases insulin sensitivity. J Pediatr 1987; 110: 481–7

    PubMed  CAS  Google Scholar 

  92. Cook J, Hoffman R, Stene M,et al. Effects ofmaturational stage on insulin sensitivity during puberty. J Clin Endocrinol Metab 1993; 77: 725–30

    PubMed  CAS  Google Scholar 

  93. Oseid S, Hermansen L. Hormonal and metabolic changes during and after prolonged muscular work in prepubertal boys. Acta Paediatr Scand 1971; 217 Suppl.: 147–53

    CAS  Google Scholar 

  94. Eriksson BO, Persson B, Thorell JI. The effects of repeated prolonged exercise on plasma growth hormone, insulin, glucose, free fatty acids, glycerol, lactate and β-hydroxybutyric acid in 13-year old boys and in adults. Acta Paediatr Scand 1971; 217 Suppl.: 142–6

    CAS  Google Scholar 

  95. Wirth A, Trager E, Scheele K, et al. Cardiopulmonary adjustment and metabolic response to maximal and submaximal physical exercise of boys and girls at different stages of maturity. Eur J Appl Physiol 1978; 39: 229–40

    CAS  Google Scholar 

  96. Delamarche P, Gratas-Delamarche A, Monnier M, et al. Glucoregulation and hormonal changes during prolonged exercise in boys and girls. Eur J Appl Physiol 1994; 68: 3–8

    CAS  Google Scholar 

  97. Hoelzer DR, Dalsky GP, Clutter WE, et al. Glucoregulation during exercise: hypoglycaemia is prevented by redundant glucoregulatory systems, sympathochromaffin activation and changes in islet hormone secretion. J Clin Invest 1986; 77: 212–21

    PubMed  CAS  Google Scholar 

  98. Boisseau N, Rannou F, Delamarche P, et al. Peripubertal period decreases insulin sensitivity and glucose utilisation during exercise. In: N Armstrong, J Welsman, editors. Children and exercise. XIX. London: E & FN Spon, 1997: 413–7

    Google Scholar 

  99. Boisseau N, Rannou F, Gratas-Delamarche A, et al. La tolerance au glucose à l’exercice prolongé chez la petite fille prépubère. Sci Sports 1999; 14: 173–9

    Google Scholar 

  100. Arslanian SA, Kalhan SC. Correlations between fatty acid and glucose metabolism. Potential explanation of insulin resistance of puberty. Diabetes 1994; 43: 908–14

    CAS  Google Scholar 

  101. Lehmann M, Keul J, Hesse A. Zur aeroben und anaeroben kapazität sowie catecholamine exkretion von kindern und jugendlichen während langdauernder submaximaler Körperarbeit. Eur J Appl Physiol 1982; 8: 135–45

    Google Scholar 

  102. Costill DL, Fink WJ, Getchell LH, et al. Lipid metabolism in skeletal muscle of endurance-trained males and females. J Appl Physiol 1979; 61: 1796–801

    Google Scholar 

  103. Berg A, Keul J, Huber G. Biochemische akutveranderunggen bei ausdauerbelastungen im kindes- und jugendalter. Monatsschr Kinderheilkd 1980; 128: 490–5

    PubMed  CAS  Google Scholar 

  104. Haralambie G. Skeletal muscle enzymee activities in female subjects of various ages. Bull Eur Physiopathol Respir 1979; 15: 259–67

    PubMed  CAS  Google Scholar 

  105. Nesher R, Karl IE, Kipnis DM. Dissociation of effects of insulin and contraction on glucose transport in rat epitrochlearis muscle. Am J Physiol 1985; 249 (3 Pt 1): C226–32

    PubMed  CAS  Google Scholar 

  106. Holloszy JO, Hansen PA. Regulation of glucose transport into skeletal muscle. Rev Physiol Biochem Pharmacol 1996; 128: 99–193

    PubMed  CAS  Google Scholar 

  107. Goodyear LJ, Kahn BB. Exercise, glucose transport, and insulin sensitivity. Annu Rev Med 1998; 49: 235–61

    PubMed  CAS  Google Scholar 

  108. Wallberg-Henriksson H. Exercise and diabetes mellitus. Exerc Sports Sci Rev 1992; 20: 339–68

    CAS  Google Scholar 

  109. Richter EA, Galbo H, Sonne B, et al. Adrenal medullary control of muscular and hepatic glycogenolysis and of pancreatic hormonal secretion in exercising rats. Acta Physiol Scand 1980; 108: 235–42

    PubMed  CAS  Google Scholar 

  110. Caprio S, Plewe G, Diamond M, et al. Increased insulin secretion in puberty: a compensatory response to reductions in insulin sensitivity. J Pediatr 1989; 114: 963–7

    PubMed  CAS  Google Scholar 

  111. Galbo H. Endocrine factors in endurance. In: Shepard RJ, Astrand PO, editors. Endurance in sport. Oxford: Blackwell scientific publications, 1992

    Google Scholar 

  112. Lehmann M, Keul J, Korsten-Reck V. Einfluß einer stufenweisen laufbanderergometrie bei kinder und erwachsenen auf die plasmacatecholamine, die aerobe und anaerobe kapazitat. Eur J Appl Physiol Occup Physiol 1981; 47 (3): 301–11

    PubMed  CAS  Google Scholar 

  113. Fleg JL, Tzankoff SP, Lakatta EG. Age related augmentation of plasma catecholamines during dynamic exercise in healthy males. J Appl Physiol 1985; 59: 1033–9

    PubMed  CAS  Google Scholar 

  114. Lehmann M, Keul J. Age-associated changes of exercise-induced plasma catecholamines responses. Eur J Appl Physiol Occup Physiol 1986; 55 (3): 302–6

    PubMed  CAS  Google Scholar 

  115. Rowland TW, Maresh CM, Charkoudian N, et al. Plasma norepinephrine responses to cycle exercise in boys and men. Int J Sports Med 1996; 17 (1): 22–6

    PubMed  CAS  Google Scholar 

  116. Marin G, Domené HM, Barnes KM, et al. The effects of estrogen priming and puberty on the growth hormone response to standardized treadmill exercise and arginine-insulin in normal girls and boys. J Clin Endocrinol Metab 1994; 79 (2): 537–41

    PubMed  CAS  Google Scholar 

  117. Bouix O, Brun JF, Fedou C, et al. Plasma beta-endorphin, corticotrophin and growth hormone to exercise in pubertal and prepubertal children. Horm Metab Res 1994; 26 (4): 195–9

    PubMed  CAS  Google Scholar 

  118. Treolar AE, Boynton RE, Behn BG, et al. Variation of human menstrual cycle through reproductive life. Int J Fertil 1967; 12: 77–126

    Google Scholar 

  119. Viru A, Laaneots L, Karelson K, et al. Exercise-induced hormone responses in girls at different stages of sexual maturation. Eur J Appl Physiol Occup Physiol 1998; 77 (5): 401–8

    PubMed  CAS  Google Scholar 

  120. Viru A, Viru M, Kuusler K, et al. Exercise-induced hormonal responses in boys in relation to sexual maturation [poster-abstract]. In: XXth international symposium of the European group of Pediatric Work Physiology; 1999 Sep 15–19; Sabaudia, 135

    Google Scholar 

  121. Cacciari E, Mazzanti L, Tassinari D, et al. Effects of sport (football) on growth: auxological, anthropometric and hormonal aspects. Eur J Appl Physiol Occup Physiol 1990; 61 (1–2): 149–58

    PubMed  CAS  Google Scholar 

  122. Mero A, Jaakkola L, Komi PV. Serum hormones and physical performance capacity in young boys athletes during a 1-year training period. Eur J Appl Physiol Occup Physiol 1990; 60 (1): 32–7

    PubMed  CAS  Google Scholar 

  123. Rowland TW, Morris AH, Kelleher JF, et al. Serum testosterone response to training in adolescent runners. Am J Dis Child 1987; 141: 881–3

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nathalie Boisseau or Paul Delamarche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boisseau, N., Delamarche, P. Metabolic and Hormonal Responses to Exercise in Children and Adolescents. Sports Med 30, 405–422 (2000). https://doi.org/10.2165/00007256-200030060-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200030060-00003

Keywords

Navigation