Skip to main content

Advertisement

Log in

Familial Dyslipidaemias

An Overview of Genetics, Pathophysiology and Management

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Plasma lipid disorders can occur either as a primary event or secondary to an underlying disease or use of medications. Familial dyslipidaemias are traditionally classified according to the electrophoretic profile of lipoproteins. In more recent texts, this phenotypic classification has been replaced with an aetiological classification. Familial dyslipidaemias are generally grouped into disorders leading to hypercholesterolaemia, hypertriglyceridaemia, a combination of hypercholesterolaemia and hypertriglyceridaemia, or abnormal high-density lipoprotein-cholesterol (HDL-C) levels.

The management of these disorders requires an understanding of plasma lipid and lipoprotein metabolism. Lipid transport and metabolism involves three general pathways: (i) the exogenous pathway, whereby chylomicrons are synthesised by the small intestine, and dietary triglycerides (TGs) and cholesterol are transported to various cells of the body; (ii) the endogenous pathway, whereby very low-density lipoprotein-cholesterol (VLDL-C) and TGs are synthesised by the liver for transport to various tissues; and (iii) the reverse cholesterol transport, whereby HDL cholesteryl ester is exchanged for TGs in low-density lipoptrotein (LDL) and VLDL particles through cholesteryl ester transfer protein in a series of steps to remove cholesterol from the peripheral tissues for delivery to the liver and steroidogenic organs.

The plasma lipid profile can provide a framework to guide the selection of appropriate diet and drug treatment. Many patients with hyperlipoproteinaemia can be treated effectively with diet. However, dietary regimens are often insufficient to bring lipoprotein levels to within acceptable limits.

In this article, we review lipid transport and metabolism, discuss the more common lipid disorders and suggest some management guidelines. The choice of a particular agent depends on the baseline lipid profile achieved after 6–12 weeks of intense lifestyle changes and possible use of dietry supplements such as stanols and plant sterols. If the predominant lipid abnormality is hypertriglyceridaemia, omega-3 fatty acids, a fibric acid derivative (fibrate) or nicotinic acid would be considered as the first choice of therapy. In subsequent follow-up, when LDL-C is >130 mg/dL (3.36 mmol/L) then an HMG-CoA reductase inhibitor (statin) should be added as a combination therapy. If the serum TG levels are <500 mg/dL (2.26 mmol/L) and the LDL-C values are over 130 mg/dL (3.36 mmol/L) then a statin would be the first drug of choice. The statin dose can be titrated up to achieve the therapeutic goal or, alternatively, ezetimibe can be added. A bile acid binding agent is an option if the serum TG levels do not exceed 200 mg/dL (5.65 mmol/L), otherwise a fibrate or nicotinic acid should be considered. The decision to treat a particular person has to be individualised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III
Fig. 1
Fig. 2
Fig. 3
Table IV
Fig. 4

Similar content being viewed by others

References

  1. Mahley RW. Biochemistry and physiology of lipid and lipoprotein metabolism. In Becker KL, editor. Principles and practice of endocrinology and metabolism, 3rd ed. Philadelphia (PA): JB Lippincott, 2001: 1503–13

    Google Scholar 

  2. Havel RJ, Kane JP. Introduction: structure and metabolism of plasma lipoproteins. In Scriver CR, Beaudet AL, Sly WS, et al., editors. The metabolic and molecular bases of inherited disease, vol. 2, 8th ed. New York: McGraw-Hill, 2001: 2705–16

    Google Scholar 

  3. Donahoo WT, Kosmiski LA. Drugs causing dyslipoproteinemia. Endocrinol Metab Clin North Am 1998; 27: 677–97

    Article  PubMed  CAS  Google Scholar 

  4. Staels B. Regulation of lipid and lipoprotein metabolism by retinoids. J Am Acad Dermatol 2001; 45: S158–67

    Article  PubMed  CAS  Google Scholar 

  5. Grover SA, Coupai L. Impact of dyslipidemia associated with Highly Active Antiretroviral Therapy (HAART) on cardiovascular risk and life expectancy. Am J Cardiol 2005; 95: 586–91

    Article  PubMed  CAS  Google Scholar 

  6. Laakso M. Lipids in type 2 diabetes. Semin Vasc Med 2002; 2: 59–66

    Article  PubMed  Google Scholar 

  7. Pearce EN. Hypothyroidism and dyslipidemia: modern concepts and approaches. Curr Cardiol Rep 2004; 6: 451–6

    Article  PubMed  Google Scholar 

  8. Nikkila EA, Pelkonen R. Serum lipids in acromegaly. Metabolism 1975; 24: 829–38

    Article  PubMed  CAS  Google Scholar 

  9. Stone NJ. Secondary causes of hyperlipidemia. Med Clin North Am 1994; 78: 117–41

    PubMed  CAS  Google Scholar 

  10. Koppers LE, Palumbo PJ. Lipid disturbances in endocrine disorders. Med Clin North Am 1972; 56: 1013–20

    PubMed  CAS  Google Scholar 

  11. Steinberg D, Pearson TA, Kuller LH. Alcohol and atherosclerosis. Ann Intern Med 1991; 114: 967–76

    PubMed  CAS  Google Scholar 

  12. Joven J, Villabona C, Vilella E, et al. Abnormalities of lipoprotein metabolism in patients with the nephrotic syndrome. N Engl J Med 1990; 323: 579–84

    Article  PubMed  CAS  Google Scholar 

  13. Crippin JS, Lindor KD, Jorgensen RA, et al. Hypercholesterolemia and atherosclerosis in primary biliary cirrhosis: what is the risk? Hepatology 1992; 15: 858–62

    Article  PubMed  CAS  Google Scholar 

  14. Santamarina-Fojo S, Dugi KA. Structure, function and role of lipoprotein lipase in lipoprotein metabolism. Curr Opin Lipidol 1994; 5: 117–25

    Article  PubMed  CAS  Google Scholar 

  15. Mahley RW, Hussain MM. Chylomicron and chylomicron remnant catabolism. Curr Opin Lipidol 1991; 2: 170–6

    Article  CAS  Google Scholar 

  16. Mahley RW, Ji Z-S. Remnant lipoprotein metabolism: key pathways involving cell-surface heparan sulfate proteoglycans and apolipoprotein E. J Lipid Res 1999; 40: 1–16

    PubMed  CAS  Google Scholar 

  17. Shelness GS, Sellers JA. Very-low-density lipoprotein assembly and secretion. Curr Opin Lipidol 2001; 12: 151–7

    Article  PubMed  CAS  Google Scholar 

  18. Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis. Science 1986; 232: 34–47

    Article  PubMed  CAS  Google Scholar 

  19. Platt N, Gordon S. Scavenger receptors: diverse activities and promiscuous binding of polyanionic ligands. Chem Biol 1998; 5: R193–203

    Article  PubMed  CAS  Google Scholar 

  20. Mooradian AD, Haas MJ, Wong NCW. The effect of select nutrients on serum high-density lipoprotein cholesterol and apolipoprotein A-I Levels. Endocr Rev 2006; 27: 2–16

    Article  PubMed  CAS  Google Scholar 

  21. Williams DL, Connelly MA, Temel RE, et al. Scavenger receptor BI and cholesterol trafficking. Curr Opin Lipidol 1999; 10: 329–39

    Article  PubMed  CAS  Google Scholar 

  22. Tall AR. An overview of reverse cholesterol transport. Eur Heart J 1998; 19 Suppl. A: A31–5

    PubMed  CAS  Google Scholar 

  23. Fielding CJ. Reverse cholesterol transport. Curr Opin Lipidol 1991; 2: 376–8

    Article  CAS  Google Scholar 

  24. Tall AR, Jiang X-C, Luo Y, et al. 1999 George Lyman Duff Memorial Lecture: lipid transfer proteins, HDL metabolism, and atherogenesis. Arterioscler Thromb Vasc Biol 2000; 20: 1185–8

    Article  PubMed  CAS  Google Scholar 

  25. University College London. LDLR locus: mutations list [online]. Available from URL: http://www.ucl.ac.uk/fh/muttab.html [Accessed 2006 Sep 27]

  26. Durrington P. Dyslipidemia. Lancet 2003; 362: 717–31

    Article  PubMed  CAS  Google Scholar 

  27. Marais AD, Firth JC. Homozygous familial hypercholesterolemia and its management. Semin Vasc Med 2004; 4: 43–50

    Article  PubMed  Google Scholar 

  28. Marks D. A review on the diagnosis, natural history, and treatment of familial hypercholesterolaemia. Atherosclerosis 2003; 168: 1–14

    Article  PubMed  CAS  Google Scholar 

  29. Van Aalst-Cohen ES, Jansen AC. Clinical, diagnostic, and therapeutic aspects of familial hypercholesterolemia. Semin Vasc Med 2004; 4: 31–41

    Article  PubMed  Google Scholar 

  30. Tonstad S, Knudtzon J. Efficacy and safety of cholestyramine therapy in peripubertal and prepubertal children with familial hypercholesterolemia. J Pediat 1996; 129: 42–9

    Article  PubMed  CAS  Google Scholar 

  31. Thompson GR. LDL apheresis. Atherosclerosis 2003; 167: 1–13

    Article  PubMed  CAS  Google Scholar 

  32. Crooke RM, Graham MJ, Lemonidis KM, et al. An apolipoprotein B antisense oligonucleotide lowers LDL cholesterol in hyperlipidemic mice without causing hepatic steatosis. J Lipid Res 2005; 46: 872–84

    Article  PubMed  CAS  Google Scholar 

  33. Fouchier SW, Defesche JC. Familial defective apoprotein B versus familial hypercholesterolemia: an assessment of risk. Semin Vasc Med 2004; 4: 259–64

    Article  PubMed  Google Scholar 

  34. Pisciotta L, Oliva CP, Pes GM, et al. Autosomal recessive hypercholesterolemia (ARH) and homozygous familial hypercholesterolemia (FH): a phenotypic comparison. Atherosclerosis 2006; 188: 398–405

    Article  PubMed  CAS  Google Scholar 

  35. Abifadel M, Varret M, Rabes JP, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 2003; 34: 154–6

    Article  PubMed  CAS  Google Scholar 

  36. Ouguerram K, Chetiveaux M, Zair Y, et al. Apolipoprotein B100 metabolism in autosomal-dominant hypercholesterolemia related to mutations in PCSK 9. Arterioscler Thromb Vasc Biol 2004; 24: 1448–53

    Article  PubMed  CAS  Google Scholar 

  37. Allard D, Amsellem S, Abifadel M, et al. Novel mutations of the PCSK9 gene cause variable phenotype of autosomal dominant hypercholesterolemia. Hum Mutat 2005; 26: 497

    Article  PubMed  Google Scholar 

  38. Scharffer EJ. Lipoprotein disorders. In Becker KL, editor. Principles and practice of endocrinology and metabolism, 3rd ed. Philadelphia (PA): JB Lippincott, 2001: 1513–31

    Google Scholar 

  39. Young SG, Hubl ST, Smith RS, et al. Familial hypobetalipoproteinemia caused by a mutation in the apolipoprotein B gene that results in a truncated species of apolipoprotein B (B-31): a unique mutation that helps to define the portion of the apolipoprotein B molecule required for the formation of buoyant, triglyceride-rich lipoproteins. J Clin Invest 1990; 85: 933–42

    Article  PubMed  CAS  Google Scholar 

  40. Berge KE, Ose L, Leren TP. Missense mutations in the PCSK9 gene are associated with hypocholesterolemia and possibly increased response to statin therapy. Arterioscler Thromb Vasc Biol 2006; 26: 1094–100

    Article  PubMed  CAS  Google Scholar 

  41. Qi L, Liu S, Rifai N, et al. Associations of the apolipoprotein A1/C3/A4/A5 gene cluster with triglyceride and HDL cholesterol levels in women with type 2 diabetes. Atherosclerosis 2006 Jun 15. Epub ahead of print

  42. Mar R, Pajukanta P, Allayee H, et al. Association of the apolipoprotein A1/C3/A4/A5 gene cluster with triglyceride levels and LDL particle size in familial combined hyperlipidemia. Circ Res 2004; 94: 993–9

    Article  PubMed  CAS  Google Scholar 

  43. Brunzell JD, Albers JJ. Plasma lipoproteins in familial combined hyperlipidemia and monogenic familial hypertriglyceridemia. J Lipid Res 1983; 24: 147–55

    PubMed  CAS  Google Scholar 

  44. Siafakas CG, Brown MR, Miller TL. Neonatal pancreatitis associated with familial lipoprotein lipase deficiency. J Pediatr Gastroenterol Nutr 1999; 29: 95–8

    Article  PubMed  CAS  Google Scholar 

  45. Benlian P, De Gennes JL, Foubert L, et al. Premature atherosclerosis in patients with familial chylomicronemia caused by mutations in the lipoprotein lipase gene. N Engl J Med 1996; 335: 848–54

    Article  PubMed  CAS  Google Scholar 

  46. Fojo SS, Brewer HB. Hypertriglyceridaemia due to genetic defects in lipoprotein lipase and apolipoprotein C-II. J Intern Med 1992; 231: 669–77

    Article  PubMed  CAS  Google Scholar 

  47. Gabelli C, Bilato C, Santamarina-Fojo S. Heterozygous apolipoprotein CII deficiency: lipoprotein and apoprotein phenotype and Rsal restriction enzyme polymorphism in the apo CII-Padova kindred. Eur J Clin Invest 1993; 23: 522–8

    Article  PubMed  CAS  Google Scholar 

  48. Catapano AL, Mills GL, Roma P. Plasma lipids lipoproteins and apoproteins in a case of apo CII deficiency. Clin Chim Acta 1983; 130: 317–32

    Article  PubMed  CAS  Google Scholar 

  49. Shachter NS, Hayek T, Leff T, et al. Overexpression of apolipoprotein CII causes hypertriglyceridemia in transgenic mice. J Clin Invest 1994; 93: 1683–90

    Article  PubMed  CAS  Google Scholar 

  50. Coon H, Xin Y. Upstream stimulatory factor 1 associated with familial combined hyperlipidemia, LDL cholesterol, and triglycerides. Hum Genet 2005; 117: 444–51

    Article  PubMed  CAS  Google Scholar 

  51. Venkatesan S, Cullen P. Stable isotopes show a direct relation between VLDL apoB overproduction and serum triglyceride levels and indicate a metabolically and biochemically coherent basis for familial combined hyperlipidemia. Arterioscler Thromb 1993; 13: 1110–8

    Article  PubMed  CAS  Google Scholar 

  52. Aguilar Salinas CA, Zamora M. Familial combined hyperlipidemia: controversial aspects of its diagnosis and pathogenesis. Semin Vasc Med 2004; 4: 203–9

    Article  PubMed  Google Scholar 

  53. Veerkamp MJ, de Graaf J. Nomogram to diagnose familial combined hyperlipidemia on the basis of results of a 5-year follow-up study. Circulation 2004; 109: 2980–5

    Article  PubMed  CAS  Google Scholar 

  54. Georgieva AM, Van Greevenbroek MMJ. Subclasses of low-density lipoprotein and very low density lipoprotein in familial combined hyperlipidemia: relationship to multiple lipoprotein phenotype. Arterioscler Thromb Vasc Biol 2004; 24: 744–9

    Article  PubMed  CAS  Google Scholar 

  55. Smelt AH, de Beer F. Apolipoprotein E and familial dysbetalipoproteinemia: clinical, biochemical, and genetic aspects. Semin Vasc Med 2004; 4: 249–57

    Article  PubMed  CAS  Google Scholar 

  56. Mahley RW, Rall SC Jr. Type III hyperlipoproteinemia (dysbetalipoproteinemia): the role of apolipoprotein E in normal and abnormal lipoprotein metabolism. In Scriver CR, Beaudet AL, Sly WS, et al., editors. The metabolic and molecular bases of inherited disease, vol. 2, 8th ed. New York: McGraw-Hill, 2001: 2835–62

    Google Scholar 

  57. Feussner G, Ziegler R. Expression of type III hyperlipoproteinaemia in a subject with secondary hypothyroidism bearing the apolipoprotein E2/2 phenotype. J Intern Med 1991; 230: 183–6

    Article  PubMed  CAS  Google Scholar 

  58. Ruel IL, Couture P, Cohn JS, et al. Evidence that hepatic lipase in humans is not associated with proatherogenic changes in HDL composition and metabolism. J Lipid Res 2004; 45: 1528–37

    Article  PubMed  CAS  Google Scholar 

  59. Tilly-Kiesi M, Schaefer EJ, Knudsen P, et al. Lipoprotein metabolism in subjects with hepatic lipase deficiency. Metabolism 2004; 53: 520–5

    Article  PubMed  CAS  Google Scholar 

  60. Third JL, Montag J, Flynn M, et al. Primary and familial hypoalphalipo-proteinemia. Metabolism 1984; 33: 136–46

    Article  PubMed  CAS  Google Scholar 

  61. Cohen JC, Kiss RS, Pertsemlidis A, et al. Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science 2004; 305: 869–72

    Article  PubMed  CAS  Google Scholar 

  62. Knopp RH, Walden CE, Wahl PW, et al. Oral contraceptive and postmenopausal estrogen effects on lipoprotein triglyceride and cholesterol in an adult female population: relationships to estrogen and progestin potency. J Clin Endocrinol Metab 1981; 53: 1123–32

    Article  PubMed  CAS  Google Scholar 

  63. Schaefer EJ. Clinical, biochemical, and genetic features in familial disorders of high density lipoprotein deficiency. Arteriosclerosis 1984; 4: 303–22

    Article  PubMed  CAS  Google Scholar 

  64. Franceschini G, Sirtori CR, Capurso A, et al. A-I Milano apoprotein: decreased high density lipoprotein cholesterol levels with significant lipoprotein modifications and without clinical atherosclerosis in an Italian family. J Clin Invest 1980; 66: 892–900

    Article  PubMed  CAS  Google Scholar 

  65. Santamarina-Fojo S, Hoeg JM, Assmann G, et al. Lecithin cholesterol acyltransferase deficiency and fish eye disease. In Scriver CR, Beaudet AL, Sly WS, et al., editors. The metabolic and molecular bases of inherited disease, vol. 2, 8th ed. New York: McGraw-Hill, 2001: 2817–2833

    Google Scholar 

  66. Funke H, von Eckardstein A, Pritchard PH, et al. Genetic and phenotypic heterogeneity in familial lecithin: cholesterol acyltransferase (LCAT) deficiency. Six newly identified defective alleles further contribute to the structural heterogeneity of this disease. J Clin Invest 1993; 91: 677–83

    CAS  Google Scholar 

  67. Klein H-G, Lohse P, Pritchard PH, et al. Two different allelic mutations in the lecithin-cholesterol acyltransferase gene associated with the fish eye syndrome: lecithin-cholesterol acyltransferase (Thr123 → Ile) and lecithin-cholesterol acyltransferase (Thr347 → Met). J Clin Invest 1992; 89: 499–506

    Article  PubMed  CAS  Google Scholar 

  68. Bodzioch M, Orsó E, Klucken J, et al. The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat Genet 1999; 22: 347–51

    Article  PubMed  CAS  Google Scholar 

  69. Serfaty-Lacrosniere C, Civeira F, Lanzberg A, et al. Homozygous Tangier disease and cardiovascular disease. Atherosclerosis 1994; 107: 85–98

    Article  PubMed  CAS  Google Scholar 

  70. Yamashita S, Maruyama T. Molecular mechanisms, lipoprotein abnormalities and atherogenicity of hyperalphalipoproteinemia. Atherosclerosis 2000; 152: 271–85

    Article  PubMed  CAS  Google Scholar 

  71. Nagano M, Yamashita S. Molecular mechanisms of cholesteryl ester transfer protein deficiency in Japanese. J Atheroscler Thromb 2004; 11: 110–21

    Article  PubMed  CAS  Google Scholar 

  72. Inazu A, Brown ML. Increased high density lipoprotein levels caused by a common cholesteryl ester transfer protein gene mutation. N Engl J Med 1990; 323: 1234–8

    Article  PubMed  CAS  Google Scholar 

  73. Zhong S, Sharp DS. Increased coronary heart disease in Japanese-American men with mutation in the cholesteryl ester transfer protein gene despite increased HDL levels. J Clin Invest 1996; 97: 2917–23

    Article  PubMed  CAS  Google Scholar 

  74. Hirano K, Yamashita S. Genetic cholesteryl ester transfer protein deficiency is extremely frequent in the Omagari area of Japan. Arterioscler Thromb Vas Biol 1997; 17: 1053–9

    Article  CAS  Google Scholar 

  75. Miyazaki A, Sakuma S. Intravenous injection of rabbit apoprotein A-I inhibits the progression of atherosclerosis in cholesterol-fed rabbits. Arterioscler Thromb Vasc Biol 1995; 15: 1882–8

    Article  PubMed  CAS  Google Scholar 

  76. Paszty C, Maeda N. Apolipoprotein AI transgene corrects apolipoprotein E deficiency-induced atherosclerosis in mice. J Clin Invest 1994; 94: 899–903

    Article  PubMed  CAS  Google Scholar 

  77. Liu A, Lawn R, Verstuyft J. Human apoprotein A-I prevents atherosclerosis associated with apoprotein (a) in transgenic mice. J Lipid Res 1994; 35: 2263–7

    PubMed  CAS  Google Scholar 

  78. De Geest B. Stengel D. Effect of overexpression of human apo A-I in C57BL/6 and C57BL/6 apo E-deficient mice on 2 lipoprotein-associated enzymes, platelet-activating factor acetylhydrolase and paraoxonase: comparison of adenovirus-mediated human apo A-I gene transfer and human apo A-I transgenesis. Arterioscler Thromb Vasc Biol 2000; 20: E68–75

    Article  PubMed  Google Scholar 

  79. Rader D, Schaefer J. Increased production of apoprotein A-I associated with elevated plasma levels of high-density lipoproteins, apolipoprotein A-I, and lipoprotein A-I in a patient with familial hyperalphalipoproteinemia. Metabolism 1993; 42: 1429–34

    Article  PubMed  CAS  Google Scholar 

  80. Gurewich V, Mittleman M. Lipoprotein(a) in coronary heart disease: is it a risk factor after all? JAMA 1994; 271: 1025–6

    Article  PubMed  CAS  Google Scholar 

  81. Stone NJ. Focus on lifestyle change and the metabolic syndrome. Clin Endocrinol Metab 2004; 33: 493–508

    Article  Google Scholar 

  82. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001; 285: 2486–97

    Article  Google Scholar 

  83. Bantle JP, Wylie-Rosett J, Albright AA, et al. Nutrition recommendations and interventions for diabetes — 2006: a position statement of the American Diabetes Association. Diabetes Care 2006; 29: 2140–57

    Article  PubMed  Google Scholar 

  84. Knopp RH. Drug treatment of lipid disorders. N Engl J Med 1999; 341: 498–511

    Article  PubMed  CAS  Google Scholar 

  85. Ashen MD, Blumenthal RS. Low HDL cholesterol levels. N Engl J Med 2005; 353: 1252–60

    Article  PubMed  CAS  Google Scholar 

  86. Bays HE. Comparison of once-daily, niacin extended-release/lovastatin with standard doses of atorvastatin and simvastatin (the ADvicor Versus Other Cholesterol-modulating Agents Trial Evaluation [ADVOCATE]). Am J Cardio 2003; 91: 667–72

    Article  CAS  Google Scholar 

  87. Harris WS, Ginsberg HN, Arunakul N, et al. Safety and efficacy of Omacor in severe hypertriglyceridemia. J Cardiovasc Risk 1997; 4: 385–91

    Article  PubMed  CAS  Google Scholar 

  88. Harris WS. N-3 fatty acids and serum lipoproteins: human studies. Am J Clin Nutr 1997; 65: 1645S–54S

    PubMed  CAS  Google Scholar 

  89. Maggie B. Omega-3 fatty acids. Am Fam Physician 2004; 70: 133–40

    Google Scholar 

  90. Kris-Etherton PM, Harris WS. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 2002; 106: 2747–57

    Article  PubMed  Google Scholar 

  91. Auwerx J, Schoonjans K, Fruchart JC, et al. Transcriptional control of triglyceride metabolism: fibrates and fatty acids change the expression of the LPL and apo C-III genes by activating the nuclear receptor PPAR. Atherosclerosis 1996; 124 Suppl. 1: S29–37

    Article  PubMed  CAS  Google Scholar 

  92. Lefebvre P, Chinetti G, Fruchart JC, et al. Sorting out the roles of PPAR alpha in energy metabolism and vascular homeostasis. J Clin Invest 2006; 116: 571–80

    Article  PubMed  CAS  Google Scholar 

  93. Schoonjans K, Peinado-Onsurbe J, Lefebvre AM, et al. PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J 1996; 15: 5336–48

    PubMed  CAS  Google Scholar 

  94. Offermanns S. The nicotinic acid receptor GPR109A (HM74A or PUMA-G) as a new therapeutic target. Trends Pharmacol Sci 2006; 27: 384–90

    Article  PubMed  CAS  Google Scholar 

  95. Tang Y, Zhou L, Gunnet JW, et al. Enhancement of arachidonic acid signaling pathway by nicotinic acid receptor HM74A. Biochem Biophys Res Commun 2006; 345: 29–37

    Article  PubMed  CAS  Google Scholar 

  96. Knowles HJ, te Poele RH, Workman P, et al. Niacin induces PPARgamma expression and transcriptional activation in macrophages via HM74 and HM74a-mediated induction of prostaglandin synthesis pathways. Biochem Pharmacol 2006; 71: 646–56

    Article  PubMed  CAS  Google Scholar 

  97. Leitersdorf E. Cholesterol absorption inhibition: filling an unmet need in lipid-lowering management. Eur Heart J Suppl 2001; 3 Suppl. E: E17–23

    CAS  Google Scholar 

  98. Brousseau ME, Schaefer EJ. Effects of an inhibitor of cholesteryl ester transfer protein on HDL cholesterol. N Engl J Med 2004; 350: 1505–15

    Article  PubMed  CAS  Google Scholar 

  99. Mooradian AD. Cardiovascular disease in type 2 diabetes mellitus: current management guidelines. Arch Intern Med 2003; 163: 33–40

    Article  PubMed  Google Scholar 

  100. Elam MB, Hunninghake DB, Davis KB, et al. Effect of niacin on lipid and lipoprotein levels and glycemic control in patients with diabetes and peripheral arterial disease. The ADMIT study: a randomized trial. Arterial Disease Multiple Intervention Trial. JAMA 2000; 284: 1263–70

    Article  PubMed  CAS  Google Scholar 

  101. Mooradian AD, Chehade JM, Thurman JE. The role of thizolidenediones in the treatment of type 2 diabetes. Treat Endocrinol 2002; 1: 13–20

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Dr Mooradian has served as a consultant, and received honoraria and grants from AstraZeneca, Merck and Abbott. Dr Hachem has no conflicts of interest relevant to the contents of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arshag D. Mooradian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hachem, S.B., Mooradian, A.D. Familial Dyslipidaemias. Drugs 66, 1949–1969 (2006). https://doi.org/10.2165/00003495-200666150-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200666150-00005

Keywords

Navigation