Skip to main content
Log in

Therapy of intracranial hypertension in patients with fulminant hepatic failure

  • Review
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Severe intracranial hypertension (IH) in the setting of fulminant hepatic failure (FHF) carries a high mortality and is a challenging disease for the critical care provider. Despite considerable improvements in the understanding of the pathophysiology of cerebral edema during liver failure, therapeutic maneuvers that are currently available to treat this disease are limited. Orthotopic liver transplantation is currently the only definitive therapeutic strategy that improves outcomes in patients with FHF. However, many patients die prior to the availability of donor organs, often because of cerebral heniation. Currently, two important theories prevail in the understanding of the pathophysiology of IH during FHF. Ammonia and glutamine causes cytotoxic cerebral injury while cerebral vasodilation caused by loss of autoregulation increases intracranial pressure (ICP) and predisposes to herniation. Although ammonia-reducing strategies are limited in humans, modulation of cerebral blood flow seems promising, at least during the early stages of hepatic encephalopathy. ICP monitoring, transcranial Doppler, and jugular venous oximetry offer valuable information regarding intracranial dynamics. Induced hypothermia, hypertonic saline, propofol sedation, and indomethacin are some of the newer therapies that have been shown to improve survival in patients with severe IH. In this article, we review the pathophysiology of IH in patients with FHF and outline various therapeutic strategies currently available in managing these patients in the critical care setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoofnagle JH, Carithers RL Jr, Shapiro C, Ascher N. Fulminapt heaptic failure: summary of a workshop. Hepatology 1995:21:240–252.

    PubMed  CAS  Google Scholar 

  2. Ostapowicz G. Fontana RJ, Schiodt FV, et al. Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States. Ann Intern Med 2002;137:947–954.

    PubMed  Google Scholar 

  3. O'Grady JG. Paracetamol hepatotoxicity: how to prevent. J R Soc Med 1997;90:368–370.

    PubMed  Google Scholar 

  4. Butterworth RF. Molecular neurobiology of acute liver failure. Semin Liver Dis 2003;23:251–258.

    Article  PubMed  CAS  Google Scholar 

  5. Blei AT. The pathophysiology of brain edema in acute liver failure. Neurochem Int 2005;47:71–77.

    Article  PubMed  CAS  Google Scholar 

  6. Jalan R. Pathophysiological basis of therapy of raised intracranial pressure in acute liver failure. Neurochem Int 2005;47:78–83.

    Article  PubMed  CAS  Google Scholar 

  7. Blei AT, Medical therapy of brain edema in fulminant hepatic failure. Hepatology 2000;32:666–669.

    Article  PubMed  CAS  Google Scholar 

  8. Blei AT. Cerebral edema and intracranial hypetension in acute liver failure: distinct aspects of the same problem. Hepatology 1991;13:376–379.

    PubMed  CAS  Google Scholar 

  9. Larsen PS, Adel HB, Pott F, et al. Dissociated cerebral vasoparalysis in acute liver failure. A hypothesis of gradual cerebral hyperaemia. J Hepatol 1996;25:145–151.

    Article  PubMed  CAS  Google Scholar 

  10. Blei AT, Larsen PS. Pathophysiology of cerebral edema in fulminant hepatic failure. J Hepatol 1999;31:771–776.

    Article  PubMed  CAS  Google Scholar 

  11. Blei AT. Pathophysiology of brain edema in fulminant hepatic failure, revisited. Metab Brain Dis 2001;16:85–94.

    Article  PubMed  CAS  Google Scholar 

  12. Ott P, Larsen FS. Blood-brain barrier permeability to ammonia in liver failure: a critical reappraisal. Neurochem Int 2004;44:185–198.

    Article  PubMed  CAS  Google Scholar 

  13. Felipo V, Buterworth RF. Neurobiology of ammonia. Prog Neurobiol 2002;67:259–279.

    Article  PubMed  CAS  Google Scholar 

  14. Norenberg MD. Oxidative and nitrosative stress in ammonia neurotoxicity. Hepatology 2003;37:245–248.

    Article  PubMed  CAS  Google Scholar 

  15. Clemmesen JO, Larsen FS, Kondrup J, Hansen BA, Ott P. Cerebral herniation in patients with acute liver failure is correlated with arterial amonia concentration. Hepatology 1999;29:648–653.

    Article  PubMed  CAS  Google Scholar 

  16. Strauss GI, Knudsen GM, Kondrup J, Moller K, Larsen FS. Cerebral metabolism of ammonia and amino acids in patients with fulminant hepatic failure. Gastroenterology 2001;121:1109–1119.

    Article  PubMed  CAS  Google Scholar 

  17. Cordoba J, Gottstein J, Blei AT. Chronic hyponatremia exacerbates ammonia-induced brain edema in rats after portacaval anastomosis. J Hepatol 1998;29:589–594.

    Article  PubMed  CAS  Google Scholar 

  18. Blei AT, Olafsson S, Therrien G, Butterworth RF. Ammoniainduced brain edema and intracranial hypertension in rats after portacaval anastomosis. Hepatology 1994;19:1437–1444.

    PubMed  CAS  Google Scholar 

  19. Rao KV, Norenberg MD. Cerebral energy metabolism in hepatic encephalopathy and hyperammonemia. Metab Brain Dis 2001; 16:67–78.

    Article  PubMed  CAS  Google Scholar 

  20. Chatauret N, Rose C, Therrien G, Butterworth RF. Mild, hypothermia prevents cerebral edema and CSF lactate accumulation in acute liver failure. Metab Brain Dis 2001;16:95–102.

    Article  PubMed  CAS  Google Scholar 

  21. Belanger M, Chan H, Hazell AS, Butterworth RF. Increased lactate dehydrogenase (LDH) expression and activity in cultured astrocytes exposed to ammonia. J Neurochem 2001;78(Suppl 1):25.

    Google Scholar 

  22. Hilgier W, Zielinska M, Borkowska HD, et al. Changes in the extracellular profiles of neuroactive amino acids in the rat striatum at the asymptomatic stage of hepatic failure. J Neurosci Res 1999;56:76–84.

    Article  PubMed  CAS  Google Scholar 

  23. Chatauret N, Zwingmann C, Rose C, Leibfritz D, Butterworth RF. Effects of hypothermia on brain glucose metabolism in acute liver failure: a H/C-nuclear magnetic resonance study. Gastroenterology 2003;125:815–824.

    Article  PubMed  CAS  Google Scholar 

  24. Tofteng F, Jorgensen L, Hansen BA, Ott P, Kondrup J, Larsen FS. Cerebral microdialysis in patients with fulminant hepatic failure Hepatology 2002;36:1333–1340.

    PubMed  Google Scholar 

  25. Larsen FS, Ejlersen E, Clemmesen JO, Kirkegaard P, Hansen BA. Preservation of cerebral oxidative metabolism in fulminant hepatic failure: an autoregulation study. Liver Transpl Surg 1996;2:348–353.

    Article  PubMed  CAS  Google Scholar 

  26. Durham S, Yonas H, Aggarwal S, Darby J, Kramer D. Regional cerebral blood flow and CO2 reactivity in fulminant hepatic failure. J Cereb Blood Flow Metab 1995;15:329–335.

    PubMed  CAS  Google Scholar 

  27. Aggarwal S, Kramer D, Yonas H, et al. Cerebral hemodynamic and metabolic changes in fulminant hepatic failure: a retrospective study. Hepatology 1994;19:80–87.

    PubMed  CAS  Google Scholar 

  28. Wendon JA, Harrison PM, Keays R, Williams R. Cerebral blood flow and metabolism in fulminant liver failure. Hepatology 1994;19:1407–1413.

    PubMed  CAS  Google Scholar 

  29. Livingstone AS, Potvin M, Goresky CA, Finlayson MH, Hinchey EJ. Changes in the blood-brain barrier in hepatic coma after hepatectomy in the rat. Gastroenterology 1977;73:697–704.

    PubMed  CAS  Google Scholar 

  30. Vaquero J, Chung C, Blei AT. Cerebral blood flow in acute liver failure: a finding in search of a mechanism Metab Brain Dis 2004;19:177–194

    Article  PubMed  Google Scholar 

  31. Yang ST, Chang HH. Nitric oxide of neuronal origin mediates NMDA-induced cerebral hyperemia in rats. Neuroreport 1998; 9:415–418.

    Article  PubMed  CAS  Google Scholar 

  32. Hermenegildo C, Monfort P, Felipo V. Activation of N-methyl-d-aspartate receptors in rat brain in vivo following acute ammonia intoxication: characterization by in vivo brain microdialysis. Hepatology 2000;31:709–715.

    Article  PubMed  CAS  Google Scholar 

  33. Moore PK, Handy RL. Selective inhibitors of neuronal nitric oxide synthase-is no NOS really good NOS for the nervous system? Trends Pharmacol Sci 1997;18:204–211.

    PubMed  CAS  Google Scholar 

  34. Iadecola C, Pelligrino DA, Moskowitz MA, Lassen NA. Nitricoxide synthase inhibition and cerebrovascular regulation. J Cereb Blood Flow Metab 1994;14:175–192.

    PubMed  CAS  Google Scholar 

  35. Song G, Dhodda VK, Blei AT, Dempsey RJ, Rao VL. GeneChip analysis shows altered mRNA expression of transcripts of neurotransmitter and signal transduction pathways in the cerebral cortex of portacaval shunted rats. J Neurosci Res 2002;68:730–737.

    Article  PubMed  CAS  Google Scholar 

  36. Harder DR, Lange AR, Gebremedhin D, Birks EK, Roman RJ Cytochrome P450 metabolites of arachidonic acid as intracellular signaling molecules in vascular tissue J Vasc Res 1997;34:237–243.

    PubMed  CAS  Google Scholar 

  37. Jalan R. Intracranial hypertension in acute liver failure: pathophysiological basis of rational management. Semin Liver Dis 2003; 23:271–282.

    Article  PubMed  Google Scholar 

  38. Ascher NL, Lake JR, Emond JC, Roberts JP. Liver transplantation for fulminant hepatic failure. Arch Surg 1993;128:677–682.

    PubMed  CAS  Google Scholar 

  39. Abdo A, Lopez O, Fernadez A, et al. Transcranial Doppler sonography in fulminant hepatic failures. Transplant Proc 2003; 35:1859–1860.

    Article  PubMed  CAS  Google Scholar 

  40. Strauss GI, Moller K, Holm S, Sperling B, Knudsen GM, Larsen FS. Transcranial Doppler sonography and internal jugular bulb saturation during hyperventilation, in patients with fulminant hepatic failure. Liver Transpl 2001;7:352–358.

    Article  PubMed  CAS  Google Scholar 

  41. Bass NM. Monitoring and treatment of intracranial hypertension. Liver Transpl 2000;6(Suppl 1):S21-S26.

    PubMed  CAS  Google Scholar 

  42. Hanid MA, Davies M, Mello PJ, et al. Clinical monitoring of intracranial pressure in fulminant hepatic failure. Gut 1980;21:866–869.

    PubMed  CAS  Google Scholar 

  43. Ellis A, Wendon J. Circulatory, respiratory, cerebral, and renal derangements in acute liver failure: pathophysiology and management. Semin Liver Dis 1996;16:379–388.

    PubMed  CAS  Google Scholar 

  44. Toftengi F, Larsen FS. Management of patients with fulminant hepatic failure and brain edema. Metab Brain Dis 2004;19:207–214.

    Article  PubMed  Google Scholar 

  45. Donovan JP, Shaw BW Jr, Langnas AN, Sorrell ME. Brain water and acute liver failure: the emerging role of intracranial pressure monitoring. Hepatology 1992;16:267–268.

    Article  PubMed  CAS  Google Scholar 

  46. McCashland TM, Shaw BW Jr, Tape E. The American experience with transplantation for acute liver failure. Semin Liver Dis 1996;16:427–433.

    Article  PubMed  CAS  Google Scholar 

  47. Davies MH, Mutimer D, Lowes J, Elias E, Neuberger J. Recovery despite impaired cerebral perfusion in fulminant hepatic failure. Lancet 1994;343:1329–1330.

    Article  PubMed  CAS  Google Scholar 

  48. Cordoba J, Blei AT. Cerebral edema and intracranial pressure monitoring. Liver Transpl Surg 1995;1:187–194.

    Article  PubMed  CAS  Google Scholar 

  49. Blei AT, Olafsson S, Webster S, Levy R. Complications of intracranial pressure monitoring in fulminant hepatic failure. Lancet 1993;341:157–158.

    Article  PubMed  CAS  Google Scholar 

  50. Shami VM, Caldwell SH, Hespenheide EE, Arseneau KO Bickston SJ, Macik BG. Necombinant activated factor VII for coagulopathy in fulminant hepatic failure compared with conventional therapy. Liver Transpl 2003;9:138–143.

    Article  PubMed  Google Scholar 

  51. Larsen FS. Cerebral circulation in liver failure: Ohm's law in force. Semin Liver Dis 1996;16:281–292.

    PubMed  CAS  Google Scholar 

  52. Shawcross DL, Davies NA, Mookerjee RP, et al. Worsening of cerebral hyperemia by the administration of terli pressin in acute liver failure with severe encephalopathy. Hepatology 2004;39:471–475.

    Article  PubMed  CAS  Google Scholar 

  53. Nielsen HB, Tofteng F, Wang LP, Larsen FS. Cerebral oxygenation determined by near-infrared spectrophotometry in patients with fulminant hepatic failure. J Hepatol 2003;38:188–192.

    Article  PubMed  Google Scholar 

  54. Cordoba J, Alonso J, Rovira A, et al. The development of lowgrade cerebral edema in cirrhosis is supported by the evolution of (1)H-magnetic resonance abnormalities after liver transplantation. J Hepatol 2001;35:598–604.

    Article  PubMed  CAS  Google Scholar 

  55. Ellis AJ, Wendon JA, Williams R. Subclinical seizure activity and prophylactic phenytoin, infusion in acute liver failure: a controlled clinical trial. Hepatology 2000;32:536–541.

    Article  PubMed  CAS  Google Scholar 

  56. Shah V, Webster S, Gottstein J, Blei AT. Reduction of cerebral perfusion precedes rise of intracranial pressure in rats with ischemic fulminant liver failure. Hepatology 1993;17:1117–1122.

    PubMed  CAS  Google Scholar 

  57. Butterworth RF. Hepatic encephalopathy and brain edema in acute hepatic failure: does glutamate play a role? Hepatology 1997;25:1032–1034.

    Article  PubMed  CAS  Google Scholar 

  58. Bhatia V, Batra Y, Acharya SK. Prophylactic phenytoin does not improve cerebral edema or survival in acute liver failure-a controlled clinical trial. J Hepatol 2004;41:89–96.

    Article  PubMed  CAS  Google Scholar 

  59. Strauss GI, Christiansen M, Moller K, Clemmesen JO, Larsen FS, Knudsen GM. S-100b and neuron-specific enolase in patients with fulminant hepatic failure. Liver Transplantation 2001;7:964–970.

    Article  PubMed  CAS  Google Scholar 

  60. Strauss GI, Edvinsson L, Larse FS, Moller K, Knudsen GM. Circulating levels of neuropeptides (CGRP, VIP, NPY) in patients with fulminant hepatic failure. Neuropeptides 2001;35:174–180.

    Article  PubMed  CAS  Google Scholar 

  61. Mansel JK, Stogner SW, Petri, MF, Norman JR. Mechanical ventilation in patients with acute severe asthma. Am J Med 1990; 89:42–48.

    Article  PubMed  CAS  Google Scholar 

  62. Williams TJ, Tuxen DV, Scheinkestel CD, Czarny D, Bowes G. Risk factors for morbidity in mechanically ventilated patients with acute severe asthma. Am Rev Respir Dis 1992;146:607–615.

    PubMed  CAS  Google Scholar 

  63. Chatauret N, Rose C, Butterworth RF. Mild hypothermia in the prevention of brain edema in acute liver failure: mechanisms and clinical prospects. Metab Brain Dis 2002;17:445–451.

    Article  PubMed  CAS  Google Scholar 

  64. Rose C, Michalak A, Pannunzio M, Chatauret N, Rambaldi A, Butterworth RF. Mild hypothermia delays the onset of coma and prevents brain edema and extracellular brain glutamate accumulation in rats with acute liver failure. Hepatology 2000;31:872–877.

    Article  PubMed  CAS  Google Scholar 

  65. Jalan R, Rose C. Hypothermia in acute liver failure. Metab Brain Dis 2004;19:215–221.

    Article  PubMed  Google Scholar 

  66. Jalan R, Olde Damink SW, Deutz NE, Hayes PC, Lee A. Restoration of cerebral blood flow autoregulation and reactivity to carbon dioxide in acute liver failure by moderate hypothermia. Hepatology 2001;34:50–54.

    Article  PubMed  CAS  Google Scholar 

  67. Jalan R, Olde Damink SW, Deutz NE, Hayes PC, Lee A. Moderate hypothermia in patients with acute liver failure and uncontrolled intracranial hypertension. Gastroenterology 2004;127:1338–1346.

    Article  PubMed  CAS  Google Scholar 

  68. Strauss GI, Hogh P, Moller K, Knudsen GM, Hansen BA, Larsen FS. Regional cerebral blood flow during mechanical hyperventilation in patients with fulminant hepatic failure. Hepatology 1999;30:1368–1373.

    Article  PubMed  CAS  Google Scholar 

  69. Strauss G, Hansen BA, Knudsen GM, Larsen FS. Hyperventilation restores cerebral, blood flow autoregulation in patients with acute liver failure. J Hepatol 1998;28:199–203.

    Article  PubMed  CAS  Google Scholar 

  70. Ede RJ, Gimson AE, Bihari D, Williams R. Controlled hyperventilation in the prevention of cerebral oedema in fulminant hepatic failure. J Hepatol 1986;2:43–51.

    Article  PubMed  CAS  Google Scholar 

  71. Marik P, Chen K, Varon J, Fromm RE, Sternbach GL. Management of increased intracranial pressure: a review for clinicians. J Emerg Med 1999;17:711–719.

    Article  PubMed  CAS  Google Scholar 

  72. Marik PE. Propofol: therapeuric indications and side effects. Curr Pharm Design 2004;10:3639–3649.

    Article  CAS  Google Scholar 

  73. Veroli P, O'Kelly B, Bertrand F, Trouvin JH, Farinotti R, Ecoffey C. Extrahepatic metabolism of propofol in man during the anhepatic phase of orthotopic liver transplantation. Br J Anaesth 1992;68:183–186.

    Article  PubMed  CAS  Google Scholar 

  74. Fulton B, Sorkin EM. Propofol. An overview of its pharmacology and a review of its clinical efficacy in intensive care sedation. Drugs 1995;50:636–657.

    PubMed  CAS  Google Scholar 

  75. Bao YP, Williamson G, Tew D, et al. Antioxidant effects of propofol in human hepatic microsomes: concentration effects and clinical relevance. Br J Anaesth 1998;81:584–589.

    PubMed  CAS  Google Scholar 

  76. Stephan H, Sonntag H, Schenk HD, Kohlhausen S Effect of Disoprivan (propofol) on the circulation and oxygen consumption of the brain and CO2 reactivity of brain vessels in the human. Anaesthesist 1987;36:60–65.

    PubMed  CAS  Google Scholar 

  77. Hartung HJ. Intracranial pressure in patients with craniocerebral trauma after administration of propofol and thiopental. Anaesthesist 1987;36:285–287.

    PubMed  CAS  Google Scholar 

  78. Hartung HJ. Modification of intracranial pressure by propofol (Disoprivan). Initial results. Anaesthesist 1987;36;66–68.

    CAS  Google Scholar 

  79. Ravussin P, Guinard JP, Ralley F, Thorin D. Effect of propofol on cerebrospinal fluid pressure and cerebral perfusion, pressure in patients undergoing craniotomy. Anaesthesia 1988;43(Suppl):37–41.

    Article  PubMed  Google Scholar 

  80. Vandesteene A, Trempont V, Engelma E, et al. Effect of propofol on cerebral blood flow and metabolism in man. Anaesthesia 1988;43(Suppl):42–43.

    Article  PubMed  CAS  Google Scholar 

  81. Enns J, Gelb AW, Manninen PH, Cerebral autoregulation is maintained during propofol-nitrous oxide anaesthesia in humans. Can J Anaes 1992;39:A43.

    Google Scholar 

  82. Jansen GF, Kagenaar D, Kedaria MB. Effects of propofol on the relation between CO2 and cerebral blood flow velocity. Anesth Analg 1993;76:S163.

    Google Scholar 

  83. Newman MF, Murkin JM, Roach G, et al. Cerebral, physiologic effects of burst suppression doses of propofol during nonpulsatile cardiopulmonary bypass. CNS Subgroup of McSPI. Anesth Analg 1995;81:452–457.

    Article  PubMed  CAS  Google Scholar 

  84. Kochs E, Hoffman WE, Werner C, Thomas C, Albrecht RF, Schulte EJ. The effects of propofol on brain electrical activity, neurologic outcome and neuronal damage following incomplete ischemia in rats. Anesthesiol 1992;76:245–252.

    Article  CAS  Google Scholar 

  85. Gelb AW, Zhang C, Henderson SM. A comparison of the cerebral protective effects of propofol, thiopental, and halothane in temporary feline focal cerebral ischemia. Anesth Analg 1993; 76:S115.

    Google Scholar 

  86. Ridenour TR, Warner DS, Todd MM, Gionet TX. Comparative effects of propofol and halothane on outcome from temporary middle cerebral atery occlusion in the rat. Anesthesiol 1992;76:807–812.

    Article  CAS  Google Scholar 

  87. Ito H, Watanabe Y, Isshiki A, Uchino H. Neuroprotective properties of propofol and midazolam, but not pentobarbital, on neuronal damage induced by forebrain ischemia, based on the GABAA receptors. Acta Anaesthesiol Scand 1999;43:153–162.

    Article  PubMed  CAS  Google Scholar 

  88. Velly LJ, Guillet BA, Masmejean FM, et al. Neuroprotective effects of propofol in a model of ischemic cortical cell cultures: role of glutamate and its transporters. Anesthesiol 2003;99:368–375.

    Article  CAS  Google Scholar 

  89. Sagara Y, Hendler S, Khoh-Reiter S, et al. Propofol hemisuccinate protects neuronal cells from oxidative injury. J Neurochem 1999;73:2524–2530.

    Article  PubMed  CAS  Google Scholar 

  90. Ergun R, Akdemir G, Sen S, Tasci A, Ergungor F. Neuroprotective effects of propofol following global cerebral ischemia in rats. Neurosurgical Review 2002;25:95–98.

    Article  PubMed  Google Scholar 

  91. Wijdicks EF, Nyberg SL. Propofol to control intracranial pressure in fulminant hepatic failure. Transplant Proc 2002;34:1220–1222.

    Article  PubMed  CAS  Google Scholar 

  92. Qureshi AI, Wilson DA, Traystman RJ. Treatment of transtentorial herniation unresponsive to hyperventilation using hypertonic saline in dogs: effect on cerebral blood flow and metabolism J Neursurg Anesthesiol 2002;14:22–30.

    Article  Google Scholar 

  93. Qureshi AI, Suarez JI. Use of hypertonic saline solutions in treatment of cerebral edema and intracranial hypertensior. Crit Care Med 2000;28:3301–3313.

    Article  PubMed  CAS  Google Scholar 

  94. Bhardwaj A, Ulatowski JA. Hypertonic saline solutions in brain injury. Curr Opin Crit Care 2004;10:126–131.

    Article  PubMed  Google Scholar 

  95. Peterson B, Khanna S, Fisher B, Marshall L. Prolonged hypernatremia controls elevated intracranial pressure in head injured pediatric patients. Crit Care Med 2000;28:1136–1143.

    Article  PubMed  CAS  Google Scholar 

  96. Toung TJ, Tyler B, Brem H, Traystman RJ, Hurn PD, Bhardwaj A. Hypertonic saline ameliorates cerebral edema associated with experimental brain tumor. J Neurosurg Anesthesiol 2002;14:187–193.

    Article  PubMed  Google Scholar 

  97. Wisner DH, Schuster L, Quinn C. Hypertonic saline resuscitation of head injury: effects on cerebral water content. J Trauma 1990; 30:75–78.

    Article  PubMed  CAS  Google Scholar 

  98. Jensen K, Ohrstrom J, Cold GE, Astrup J. The effects of indomethacin on intracranial pressure, cerebral blood flow and cerebral metabolism in patients with severe head injury and intracranial hypertension. Acta Neurochirurgica 1991;108:116–121.

    Article  PubMed  CAS  Google Scholar 

  99. Shackford SR, Schmoker JD, Zhuang J. The effect of hypertonic resuscitation on pial arteriolar tone after brain injury and shock. J Trauma 1994;37:899–908.

    Article  PubMed  CAS  Google Scholar 

  100. Nakayama S, Kramer GC, Carlsen RC, Holcroft JW. Infusion of very hypertonic saline to bled rats: membrane potentials and fluid shifts. J Surg Res 1985;38:180–186.

    Article  PubMed  CAS  Google Scholar 

  101. Murphy N, Auzinger G, Bernel W, Wendon J. The effect of hypertonic sodium chloride on intracranial pressure in patients with acute liver failure. Hepatology 2004;39:464–470.

    Article  PubMed  CAS  Google Scholar 

  102. Canalese J, Gimson AE, Davis C, Mellon PJ, Davis M, Williams R. Controlled trial of dexamethasone and mannitol for the cerebral oedema of fulminant hepatic failure. Gut 1982; 23:625–629.

    PubMed  CAS  Google Scholar 

  103. Dahl B, Bergholt B, Cold GE, et al. CO(2) and indomethacin vasoreactivity in patients with head injury. Acta Neurochirurgica 1996;138:265–273.

    Article  PubMed  CAS  Google Scholar 

  104. Jensen K, Freundlich M, Bunemann L, Therkelsen K, Hansen H, Cold GE. The effect of indomethacin upon cerebral blood flow in healthy volunteers. The influence of moderate hypoxia and hypercapnia. Acta Neurochirurgica 1993;124:114–119.

    Article  PubMed  CAS  Google Scholar 

  105. Chung C, Gottstein J, Blei AT. Indomethacin prevents the development of experimental ammonia-induced brain edema in rats after portacaval anastomosis. Hepatology 2001;34:249–254.

    Article  PubMed  CAS  Google Scholar 

  106. Tofteng F, Larsen FS. The effect of indomethacin on intracranial pressure, cerebral perfusion and extracellular lactate and glutamate concentrations in patients with fulminant hepatic failure. J Cereb Blood Flow Metab 2004;24:798–804.

    Article  PubMed  CAS  Google Scholar 

  107. Clemmesen JO, Hansen BA, Larsen FS. Indomethacin normalizes intracranial pressure in acute liver failure: a twenty-three-year-old woman treated with indomethacin. Hepatology 1997;26:1423–1425.

    Article  PubMed  CAS  Google Scholar 

  108. Forbes A, Alexander GJ, O'Grady JG, et al. Thiopental infusion in the treatment of intracranial hypertension complicating fulminant hepatic failure. Hepatology 1989;10:306–310.

    Article  PubMed  CAS  Google Scholar 

  109. Strom SC, Fisher RA, Thompson MT, et al. Mepatocyte transplantation as a bridge to orthotopic liver transplantation in terminal liver failure. Transplantation 1997;63:559–569.

    Article  PubMed  CAS  Google Scholar 

  110. Samuel D, Ichai P, Feray C, et al. Neurological improvement during bioartificial liver sessions in patients with acute liver failure awaiting transplantation. Transplantation 2002;73:257–264.

    Article  PubMed  CAS  Google Scholar 

  111. Bismuth H, Samuel D, Castaing D, Williams R, Pereira SP. Liver transplantation in Europe for patients with acute liver failure. Semin Liver Dis 1996;16:415–425.

    PubMed  CAS  Google Scholar 

  112. Jalan R, Pollok A, Shah SH, Madhavan K, Simpson KJ. Liver derived pro-inflammatory cytokines may be important in producting intracranial hypertension in acute liver failure. J Hepatol 2002;37:536–538.

    Article  PubMed  CAS  Google Scholar 

  113. Ringe B, Lubbe N, Kuse E, Frei U, Pichlmayr K. Total hepatectomy and liver transplantation as two-stage procedure. Ann Surg 1993;218:3–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul E. Marik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raghavan, M., Marik, P.E. Therapy of intracranial hypertension in patients with fulminant hepatic failure. Neurocrit Care 4, 179–189 (2006). https://doi.org/10.1385/NCC:4:2:179

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/NCC:4:2:179

Key Words

Navigation