Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-06-03T02:37:23.692Z Has data issue: false hasContentIssue false

Theta and alpha activity are differentially associated with physiological and rating scale measures of affective processing in adolescents with but not without ADHD

Published online by Cambridge University Press:  26 June 2023

Mária Takács
Affiliation:
Clinical and Developmental Neuropsychology Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary Department of Cognitive Science, Faculty of Natural Sciences, Budapest University of Technology and Economics, Budapest, Hungary
Brigitta Tóth
Affiliation:
Sound and Speech Perception Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
Orsolya Szalárdy
Affiliation:
Sound and Speech Perception Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary Institute of Behavioural Sciences, Faculty of Medicine, Semmelweis University, Budapest, Hungary
Nóra Bunford*
Affiliation:
Clinical and Developmental Neuropsychology Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
*
Corresponding author: Nóra Bunford; Email: bunford.nora@ttk.hu

Abstract

Although atypical theta and alpha activity may be biomarkers of attention-deficit/hyperactivity disorder (ADHD) outcomes such as atypical affective processing and attention, the exact nature of the relations of these characteristics is unknown. We examined in age- and sex-matched adolescents (N = 132; M age = 14.944, years, SD = .802) with and without ADHD, whether resting state (RS) theta and alpha power or theta and alpha event-related synchronization (ERS) during affect regulation (1) differ between adolescents with and without ADHD; (2) are differentially associated with event-related potential (ERP) and parent- and self-report measures of affective processing and inattention, given ADHD status and sex, and (3) are differentially lateralized, given ADHD status and sex. Adolescents with ADHD exhibited lower RS frontal-midline alpha power than adolescents without ADHD. In adolescents with ADHD, right parietal theta ERS was positively associated with the ERP measure of elaborate affective/motivational processing and right parietal RS alpha power was negatively associated with self-reported positive affectivity. In adolescents without ADHD, associations were nonsignificant. There was no disassociation of theta and alpha activity with affective processing and inattention. Consistent with clinical impressions, the between-group difference in frontal-midline theta ERS was more marked in boys than girls.

Type
Regular Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Orsolya Szalárdy and Nóra Bunford contributed equally.

References

Adrian, M., Zeman, J., Erdley, C., Lisa, L., Homan, K., & Sim, L. (2009). Social contextual links to emotion regulation in an adolescent psychiatric inpatient population: Do gender and symptomatology matter? Journal of Child Psychology and Psychiatry, 50(11), 14281436. https://doi.org/10.1111/j.1469-7610.2009.02162.x CrossRefGoogle Scholar
Aftanas, L. I., Reva, N. V., & Makhnev, V. P. (2008). Individual variability of brain oscillatory and autonomous concomitants of motivated attention. International Journal of Psychophysiology, 69(3), 197. https://doi.org/10.1016/j.ijpsycho.2008.05.533 CrossRefGoogle Scholar
American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-5). Diagnostic and Statistical Manual of Mental Disorders 4th Edition TR (Vol. 280). American Psychiatric Association. https://doi.org/10.1176/appi.books.9780890425596.744053 Google Scholar
Ansarinasab, S., Panahi, S., Ghassemi, F., Ghosh, D., & Jafari, S. (2022). Synchronization stability analysis of functional brain networks in boys with ADHD during facial emotions processing. Physica A: Statistical Mechanics and Its Applications, 603, 127848. https://doi.org/10.1016/j.physa.2022.127848 CrossRefGoogle Scholar
Arns, M., Conners, C. K., & Kraemer, H. C. (2013). A decade of EEG theta/beta ratio research in ADHD: A meta-analysis. Journal of Attention Disorders, 17(5), 374383. https://doi.org/10.1177/1087054712460087 CrossRefGoogle ScholarPubMed
Babiloni, C., Miniussi, C., Babiloni, F., Carducci, F., Cincotti, F., Del Percio, C., Sirello, G., Fracassi, C., Nobre, A. C., & Rossini, P. M. (2004). Sub-second, temporal attention, modulates alpha rhythms. A high-resolution EEG study. Cognitive Brain Research, 19(3), 259268. https://doi.org/10.1016/j.cogbrainres.2003.12.010 CrossRefGoogle ScholarPubMed
Ball, T. M. M., Stein, M. B. B., & Paulus, M. P. P. (2014). Toward the application of functional neuroimaging to individualized treatment for anxiety and depression. Depression and Anxiety, 31(11), 920933. https://doi.org/10.1002/da.22299 CrossRefGoogle ScholarPubMed
Barry, R. J., Clarke, A. R., & Johnstone, S. J. (2003). A review of electrophysiology in attention-deficit/hyperactivity disorder: I. Qualitative and quantitative electroencephalography. Clinical Neurophysiology, 114(2), 171183. https://doi.org/10.1016/S1388-2457(02)00362-0 CrossRefGoogle ScholarPubMed
Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7(6), 11291159. https://doi.org/10.1162/neco.1995.7.6.1129 CrossRefGoogle ScholarPubMed
Biederman, J., Kwon, A., Aleardi, M., Chouinard, V. A., Marino, T., Cole, H., Mick, E., & Faraone, S. V. (2005). Absence of gender effects on attention deficit hyperactivity disorder: Findings in nonreferred subjects. American Journal of Psychiatry, 162(6), 10831089. https://doi.org/10.1176/appi.ajp.162.6.1083 CrossRefGoogle ScholarPubMed
Biederman, J., Mick, E., Faraone, S. V., Braaten, E., Doyle, A., Spencer, T., Wilens, T. E., Frazier, E., & Johnson, M. A. (2002). Influence of gender on attention deficit hyperactivity disorder in children referred to a psychiatric clinic. American Journal of Psychiatry, 159(1), 3642. https://doi.org/10.1176/appi.ajp.159.1.36 CrossRefGoogle ScholarPubMed
Boutros, N., Fraenkel, L., & Feingold, A. (2005). A four-step approach for developing diagnostic tests in psychiatry: EEG in ADHD as a test case. Journal of Neuropsychiatry and Clinical Neurosciences, 17(4), 455464. https://doi.org/10.1176/jnp.17.4.455 CrossRefGoogle ScholarPubMed
Bresnahan, S. M., Anderson, J. W., & Barry, R. J. (1999). Age-related changes in quantitative EEG in attention- deficit/hyperactivity disorder. Biological Psychiatry, 46(12), 16901697. https://doi.org/10.1016/S0006-3223(99)00042-6 CrossRefGoogle ScholarPubMed
Bunford, N., Brandt, N. E., Golden, C., Dykstra, J. B., Suhr, J. A., & Owens, J. S. (2015). Attention-deficit/hyperactivity disorder symptoms mediate the association between deficits in executive functioning and social impairment in children. Journal of Abnormal Child Psychology, 43(1), 133147. https://doi.org/10.1007/s10802-014-9902-9 CrossRefGoogle ScholarPubMed
Bunford, N., Dawson, A. E., Evans, S. W., Ray, A. R., Langberg, J. M., Owens, J. S., DuPaul, G. J., & Allan, D. M. (2020). The difficulties in emotion regulation scale-parent report: A psychometric investigation examining adolescents with and without ADHD. Assessment, 27(5), 921940. https://doi.org/10.1177/1073191118792307 CrossRefGoogle ScholarPubMed
Bunford, N., Evans, S. W., Becker, S. P., & Langberg, J. M. (2015). Attention-deficit/hyperactivity disorder and social skills in youth: A moderated mediation model of emotion dysregulation and depression. Journal of Abnormal Child Psychology, 43(2), 283296. https://doi.org/10.1007/s10802-014-9909-2 CrossRefGoogle ScholarPubMed
Bunford, N., Evans, S. W., & Langberg, J. M. (2018). Emotion dysregulation is associated with social impairment among young adolescents with ADHD. Journal of Attention Disorders, 22(1), 6682. https://doi.org/10.1177/1087054714527793 CrossRefGoogle ScholarPubMed
Bunford, N., Evans, S. W., & Wymbs, F. (2015). ADHD and emotion dysregulation among children and adolescents. Clinical Child and Family Psychology Review, 18(3), 185217. https://doi.org/10.1007/s10567-015-0187-5 CrossRefGoogle ScholarPubMed
Bunford, N., Hámori, G., Nemoda, Z., Angyal, N., Fiáth, R., Sebők-Welker, T.É., Pászthy, B., Ulbert, I., & Réthelyi, J. M. (2023). The domain-variant indirect association between electrophysiological response to reward and ADHD presentations is moderated by dopaminergic polymorphisms. Comprehensive Psychiatry, 124, 152389. https://doi.org/10.1016/j.comppsych.2023.152389 CrossRefGoogle ScholarPubMed
Bunford, N., Kujawa, A., Dyson, M., Olino, T., & Klein, D. N. (2021). Developmental pathways from preschool temperament to early adolescent ADHD symptoms through initial responsiveness to reward. Development and Psychopathology, 16(3), 113. https://doi.org/10.1017/S0954579420002199 Google Scholar
Bunford, N., Kujawa, A., Fitzgerald, K. D., Swain, J. E., Hanna, G. L., Koschmann, E., Simpson, D., Connolly, S., Monk, C. S., & Phan, K. L. (2017). Neural reactivity to angry faces predicts treatment response in pediatric anxiety. Journal of Abnormal Child Psychology, 45(2), 385395. https://doi.org/10.1007/s10802-016-0168-2 CrossRefGoogle ScholarPubMed
Bunford, N., Kujawa, A., Fitzgerald, K. D. K. D., Monk, C. S. C. S., & Phan, K. L. L. (2018). Convergence of BOLD and ERP measures of neural reactivity to emotional faces in children and adolescents with and without anxiety disorders. Biological Psychology, 134, 919. https://doi.org/10.1016/j.biopsycho.2018.02.006 CrossRefGoogle ScholarPubMed
Bunford, N., Kujawa, A., Swain, J. E., Fitzgerald, K. D., Monk, C. S., & Phan, K. L. L. (2017). Attenuated neural reactivity to happy faces is associated with rule breaking and social problems in anxious youth. European Child & Adolescent Psychiatry, 26(2), 215230. https://doi.org/10.1007/s00787-016-0883-9 CrossRefGoogle ScholarPubMed
Callaway, E., Halliday, R., & Naylor, H. (1983). Hyperactive children’s event-related potentials fail to support underarousal and maturational-lag theories. Archives of General Psychiatry, 40(11), 1243. https://doi.org/10.1001/archpsyc.1983.01790100089012 CrossRefGoogle ScholarPubMed
Cavanagh, J. F., & Frank, M. J. (2014). Frontal theta as a mechanism for cognitive control. Trends in Cognitive Sciences, 18(8), 414421. https://doi.org/10.1016/j.tics.2014.04.012 CrossRefGoogle ScholarPubMed
Chabot, R. J., & Serfontein, G. (1996). Quantitative electroencephalographic profiles of children with attention deficit disorder. Biological Psychiatry, 40(10), 951953. https://doi.org/10.1016/0006-3223(95)00576-5 CrossRefGoogle ScholarPubMed
Cicchetti, D., & Rogosch, F. A. (1996). Equifinality and multifinality in developmental psychopathology. Development and Psychopathology, 8(04), 597600. https://doi.org/10.1017/S0954579400007318 CrossRefGoogle Scholar
Clarke, A. R., Barry, R. J., McCarthy, R., & Selikowitz, M. (1998). EEG analysis in attention-deficit/hyperactivity disorder: A comparative study of two subtypes. Psychiatry Research, 81(1), 1929. https://doi.org/10.1016/S0165-1781(98)00072-9 CrossRefGoogle ScholarPubMed
Clarke, A. R., Barry, R. J., McCarthy, R., & Selikowitz, M. (2001a). Age and sex effects in the EEG: Development of the normal child. Clinical Neurophysiology, 112(5), 806814. https://doi.org/10.1016/S1388-2457(01)00488-6 CrossRefGoogle ScholarPubMed
Clarke, A. R., Barry, R. J., McCarthy, R., & Selikowitz, M. (2001b). Age and sex effects in the EEG: Differences in two subtypes of attention-deficit/hyperactivity disorder. Clinical Neurophysiology, 112(5), 815826. https://doi.org/10.1016/S1388-2457(01)00487-4 CrossRefGoogle ScholarPubMed
Clarke, A. R., Barry, R. J., McCarthy, R., & Selikowitz, M. (2001c). EEG-defined subtypes of children with attention-deficit/hyperactivity disorder. Clinical Neurophysiology, 112(11), 20982105. https://doi.org/10.1016/S1388-2457(01)00668-X CrossRefGoogle ScholarPubMed
Clarke, A. R., Barry, R. J., McCarthy, R., & Selikowitz, M. (2002). EEG analysis of children with attention-deficit/hyperactivity disorder and comorbid reading disabilities. Journal of Learning Disabilities, 35(3), 276285. https://doi.org/10.1177/002221940203500309 CrossRefGoogle ScholarPubMed
Cuthbert, B. N., Schupp, H. T., Bradley, M. M., Birbaumer, N., & Lang, P.J. (2000). Brain potentials in affective picture processing: Covariation with autonomic arousal and affective report. Biological Psychology. 52, 95111.CrossRefGoogle ScholarPubMed
De Reyes, A. L., & Kazdin, A. E. (2005). Informant discrepancies in the assessment of childhood psychopathology: A critical review, theoretical framework, and recommendations for further study. Psychological Bulletin, 131(4), 483509. https://doi.org/10.1037/0033-2909.131.4.483 CrossRefGoogle Scholar
Defrance, J. F., Smith, S., Schweitzer, F. C., Ginsberg, L., & Sands, S. (1996). Topographical analyses of attention disorders of childhood. International Journal of Neuroscience, 87(1-2), 4161. https://doi.org/10.3109/00207459608990752 CrossRefGoogle ScholarPubMed
Delaney, H. D., & Vargha, A. (2002). Comparing several robust tests of stochastic equality with ordinally scaled variables and small to moderate sized samples. Psychological Methods, 7(4), 485503. https://doi.org/10.1037/1082-989X.7.4.485 CrossRefGoogle ScholarPubMed
Diao, L., Qi, S., Xu, M., Fan, L., & Yang, D. (2017). Electroencephalographic theta oscillatory dynamics reveal attentional bias to angry faces. Neuroscience Letters, 656, 3136. https://doi.org/10.1016/j.neulet.2017.06.047 CrossRefGoogle ScholarPubMed
Dirks, M. A., De Los Reyes, A., Briggs-gowan, M., Cella, D., & Wakschlag, L. S. (2012). Embracing not erasing contextual variability in children’s behaviour. Journal of Child Psychology and Psychiatry. https://doi.org/10.1111/j.1469-7610.2012.02537.x. EmbracingGoogle ScholarPubMed
Dockree, P. M., Kelly, S. P., Roche, R. A. P., Hogan, M. J., Reilly, R. B., & Robertson, I. H. (2004). Behavioural and physiological impairments of sustained attention after traumatic brain injury. Cognitive Brain Research, 20(3), 403414. https://doi.org/10.1016/j.cogbrainres.2004.03.019 CrossRefGoogle ScholarPubMed
Dunning, J. P., & Hajcak, G. (2007). Error-related negativities elicited by monetary loss and cues that predict loss. Neuroreport, 18(17), 18751878. https://doi.org/10.1097/WNR.0b013e3282f0d50b CrossRefGoogle ScholarPubMed
DuPaul, G. J., Power, T. J., Anastopoulos, A. D., & Reid, R. (2016). ADHD rating scale-5 for children and adolescents. The Guilford Press.Google Scholar
Eme, R. F. (1992). Selective females affliction in the developmental disorders of childhood: A literature review. Journal of Clinical Child Psychology. https://doi.org/10.1207/s15374424jccp2104_5 CrossRefGoogle Scholar
Faraone, S. V., Biederman, J., & Mick, E. (2006). The age-dependent decline of attention deficit hyperactivity disorder: A meta-analysis of follow-up studies. Psychological Medicine, 36(2), 159165. https://doi.org/10.1017/s003329170500471x CrossRefGoogle ScholarPubMed
Foti, D., & Hajcak, G. (2009). Depression and reduced sensitivity to non-rewards versus rewards: Evidence from event-related potentials. Biological Psychology, 81(1), 18. https://doi.org/10.1016/j.biopsycho.2008.12.004 CrossRefGoogle ScholarPubMed
Gao, Y., Shuai, D., Bu, X., Hu, X., Tang, S., Zhang, L., Li, H., Hu, X., Lu, L., Gong, Q., Huang, X. (2019). Impairments of large-scale functional networks in attention-deficit/hyperactivity disorder: A meta-analysis of resting-state functional connectivity. Psychological Medicine, 49(15), 24752485. https://doi.org/10.1017/S003329171900237X CrossRefGoogle ScholarPubMed
Gasser, T., Verleger, R., Bächer, P., & Sroka, L. (1988). Development of the EEG of school-age children and adolescents. I. Analysis of band power. Electroencephalography and Clinical Neurophysiology. https://doi.org/10.1016/0013-4694(88)90204-0 Google ScholarPubMed
Gaub, M., & Carlson, C. L. (1997). Gender differences in ADHD: A meta-analysis and critical review. Journal of the American Academy of Child and Adolescent Psychiatry, 36(8), 10361045. https://doi.org/10.1097/00004583-199708000-00011 CrossRefGoogle ScholarPubMed
Gershon, J. (2002). A meta-analytic review of gender differences in ADHD. Journal of Attention Disorders, 5(3), 143154. https://doi.org/10.1177/108705470200500302 CrossRefGoogle ScholarPubMed
Gratz, K. L., & Roemer, L. (2004). Multidimensional assessment of emotion regulation and dysregulation: Development, factor structure, and initial validation of the Difficulties in Emotion Regulation Scale. Journal of Psychopathology and Behavioral Assessment, 26, 4154. https://doi.org/10.1023/B:JOBA.0000007455.08539.94 CrossRefGoogle Scholar
Guo, J., Luo, X., Li, B., Chang, Q., Sun, L., & Song, Y. (2020). Abnormal modulation of theta oscillations in children with attention-deficit/hyperactivity disorder. NeuroImage. Clinical, 27, 102314. https://doi.org/10.1016/j.nicl.2020.102314 CrossRefGoogle ScholarPubMed
Guo, J., Luo, X., Wang, E., Li, B., Chang, Q., Sun, L., & Song, Y. (2019). Abnormal alpha modulation in response to human eye gaze predicts inattention severity in children with ADHD. Developmental Cognitive Neuroscience, 38, 100671. https://doi.org/10.1016/j.dcn.2019.100671 CrossRefGoogle ScholarPubMed
Gyollai, Á., Simor, P. P. P., Köteles, F., Demetrovics, Z., Gyollai, A., Simor, P. P. P., Koteles, F., Demetrovics, Z., Gyollai, Á., Simor, P. P. P., Köteles, F., & Demetrovics, Z. (2011). Psychometric properties of the Hungarian version of the original and the short form of the Positive and Negative Affect Schedule (PANAS). Neuropsychopharmacologia Hungarica: A Magyar Pszichofarmakologiai Egyesulet Lapja = Official Journal of the Hungarian Association of Psychopharmacology, 13(2), 7379.Google ScholarPubMed
Hajcak, G., MacNamara, A, & Olvet, D. M. (2010). Event-Related potentials, emotion, and emotion regulation: an integrative review. Developmental Neuropsychology, 35, 129155.CrossRefGoogle ScholarPubMed
Hajcak, G., & Nieuwenhuis, S. (2006). Reappraisal modulates the electrocortical response to unpleasant pictures. Cognitive, Affective, & Behavioral Neuroscience, 6, 291297.CrossRefGoogle ScholarPubMed
Hajcak, G., Weinberg, A., MacNamara, A., & Foti, D. (2011). ERPs and the study of emotion. In Luck, S. J. & Kappenman, E. (Eds.), Handbook of event-related potential components (pp. 441472). Oxford University Press.Google Scholar
Halgren, M., Ulbert, I., Bastuji, H., Fabó, D., Eross, L., Rey, M., Devinsky, O., Doyle, W. K., Mak-McCully, R., Halgren, E., Wittner, L., Chauvel, P., Heit, G., Eskandar, E., Mandell, A., & Cash, S. S. (2019). The generation and propagation of the human alpha rhythm. Proceedings of the National Academy of Sciences of the United States of America, 116(47), 2377223782. https://doi.org/10.1073/pnas.1913092116 CrossRefGoogle ScholarPubMed
Hámori, G., File, B., Fiáth, R., Pászthy, B., Réthelyi, J. M., Ulbert, I., & Bunford, N. (2023). Adolescent ADHD and electrophysiological reward responsiveness: A machine learning approach to evaluate classification accuracy and prognosis. Psychiatry Research, 323, 115139. https://doi.org/10.1016/j.psychres.2023.115139 CrossRefGoogle ScholarPubMed
Hámori, G., Rádosi, A., Pászthy, B., Réthelyi, J. M., Ulbert, I., Fiáth, R., & Bunford, N. (2022). Reliability of reward ERPs in middle-late adolescents using a custom and a standardized preprocessing pipeline. Psychophysiology, 59(8), e14043.CrossRefGoogle Scholar
Harmony, T., Marosi, E., Díaz de León, A. E., Becker, J., & Fernández, T. (1990). Effect of sex, psychosocial disadvantages and biological risk factors on EEG maturation. Electroencephalography and Clinical Neurophysiology, 75(6), 482491. https://doi.org/10.1016/0013-4694(90)90135-7 CrossRefGoogle ScholarPubMed
Hinshaw, S. P., Owens, E. B., Sami, N., & Fargeon, S. (2006). Prospective follow-up of girls with attention-deficit/hyperactivity disorder into adolescence: Evidence for continuing cross-domain impairment. Journal of Consulting and Clinical Psychology, 74(3), 489499. https://doi.org/10.1037/0022-006X.74.3.489 CrossRefGoogle ScholarPubMed
Kawasaki, M., & Yamaguchi, Y. (2012). Effects of subjective preference of colors on attention-related occipital theta oscillations. NeuroImage, 59(1), 808814. https://doi.org/10.1016/j.neuroimage.2011.07.042 CrossRefGoogle ScholarPubMed
Kieling, C., Kieling, R. R., Rohde, L. A., Frick, P. J., Moffitt, T., Nigg, J. T., Tannock, R., & Castellanos, F. X. (2010). The age at onset of attention deficit hyperactivity disorder. American Journal of Psychiatry, 167(1), 1416. https://doi.org/10.1176/appi.ajp.2009.09060796 CrossRefGoogle ScholarPubMed
Knyazev, G. G. (2007). Motivation, emotion, and their inhibitory control mirrored in brain oscillations. Neuroscience and Biobehavioral Reviews, 31(3), 377395. https://doi.org/10.1016/j.neubiorev.2006.10.004 CrossRefGoogle ScholarPubMed
Koehler, S., Lauer, P., Schreppel, T., Jacob, C., Heine, M., Boreatti-Hümmer, A., Fallgatter, A. J., & Herrmann, M. J. (2009). Increased EEG power density in alpha and theta bands in adult ADHD patients. Journal of Neural Transmission, 116(1), 97104. https://doi.org/10.1007/s00702-008-0157-x CrossRefGoogle ScholarPubMed
Kökönyei, G., Urbán, R., Reinhardt, M., Józan, A., & Demetrovics, Z. (2014). The difficulties in emotion regulation scale: Factor structure in chronic pain patients. Journal of Clinical Psychology, 70(6), 589600. https://doi.org/10.1002/jclp.22036 CrossRefGoogle ScholarPubMed
Központi Statisztikai Hivatal (2021). 435 200 forint volt a bruttó átlagkereset. GYORSTÁJÉKOZTATÓ. Keresetek, 2021. Március.Google Scholar
Kujawa, A., Carroll, A., Mumper, E., Mukherjee, D., Kessel, E. M., Olino, T., Hajcak, G., & Klein, D. N. (2018). A longitudinal examination of event-related potentials sensitive to monetary reward and loss feedback from late childhood to middle adolescence. International Journal of Psychophysiology, 132, 323330. https://doi.org/10.1016/j.ijpsycho.2017.11.001 CrossRefGoogle ScholarPubMed
Kujawa, A., Klein, D. N., & Proudfit, G. H. (2013). Two-year stability of the late positive potential across middle childhood and adolescence. Biological Psychology, 94(2), 290296. https://doi.org/10.1016/j.biopsycho.2013.07.002 CrossRefGoogle ScholarPubMed
Kujawa, A., Proudfit, G. H., & Klein, D. N. (2014). Neural reactivity to rewards and losses in offspring of mothers and fathers with histories of depressive and anxiety disorders. Journal of Abnormal Psychology, 123(2), 287297. https://doi.org/10.1037/a0036285 CrossRefGoogle ScholarPubMed
Kujawa, A., Proudfit, G. H. H., Kessel, E. M. M., Dyson, M., Olino, T., & Klein, D. N. N. (2015). Neural reactivity to monetary rewards and losses in childhood: Longitudinal and concurrent associations with observed and self-reported positive emotionality. Biological Psychology, 104, 4147. https://doi.org/10.1016/j.biopsycho.2014.11.008 CrossRefGoogle ScholarPubMed
Kujawa, A., Smith, E., Luhmann, C., & Hajcak, G. (2013). The feedback negativity reflects favorable compared to nonfavorable outcomes based on global, not local, alternatives. Psychophysiology, 50(2), 134138. https://doi.org/10.1111/psyp.12002 CrossRefGoogle Scholar
Kujawa, A., Weinberg, A., Bunford, N., Fitzgerald, K. D., Hanna, G. L., Monk, C. S. S., Kennedy, A. E., Klumpp, H., Hajcak, G., Phan, K. L. L., Swain, J. E., Monk, C. S., Hajcak, G., Phan, K. L. (2016). Error-related brain activity in youth and young adults with generalized or social anxiety disorder before and after treatment. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 71, 162168. https://doi.org/10.1016/j.pnpbp.2016.07.010 CrossRefGoogle ScholarPubMed
Lahey, B. B. (2009). Public health significance of neuroticism. American Psychologist, 64(4), 241256. https://doi.org/10.1037/a0015309 CrossRefGoogle ScholarPubMed
Langberg, J. M., Epstein, J. N., Altaye, M., Molina, B. S. G., Arnold, L. E., & Vitiello, B. (2008). The transition to middle school is associated with changes in the developmental trajectory of ADHD symptomatology in young adolescents with ADHD. Journal of Clinical Child and Adolescent Psychology: The Official Journal for the Society of Clinical Child and Adolescent Psychology, American Psychological Association, Division, 37(3), 651663. https://doi.org/10.1080/15374410802148095 CrossRefGoogle ScholarPubMed
Lapomarda, G., Valer, S., Job, R., & Grecucci, A. (2022). Built to last: Theta and delta changes in resting-state EEG activity after regulating emotions. Brain and Behavior, 12(6), e2597. https://doi.org/10.1002/brb3.2597 CrossRefGoogle ScholarPubMed
Laufs, H., Krakow, K., Sterzer, P., Eger, E., Beyerle, A., Salek-Haddadi, A., & Kleinschmidt, A. (2003). Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proceedings of the National Academy of Sciences of the United States of America, 100(19), 1105311058. https://doi.org/10.1073/pnas.1831638100 CrossRefGoogle ScholarPubMed
Le, H. H., Hodgkins, P., Postma, M. J., Kahle, J., Sikirica, V., Setyawan, J., & Doshi, J. A. (2014). Economic impact of childhood/adolescent ADHD in a european setting: The Netherlands as a reference case. European Child & Adolescent Psychiatry, 23(7), 587598.CrossRefGoogle Scholar
Leutgeb, V., Schäfer, A., Köchel, A., Scharmüller, W., & Schienle, A. (2010). Psychophysiology of spider phobia in 8- to 12-year-old girls. Biological Psychology, 85(3), 424431.CrossRefGoogle ScholarPubMed
Loo, S. K., McGough, J. J., McCracken, J. T., & Smalley, S. L. (2018). Parsing heterogeneity in attention-deficit hyperactivity disorder using EEG-based subgroups. Journal of Child Psychology and Psychiatry and Allied Disciplines, 59(3), 223231. https://doi.org/10.1111/jcpp.12814 CrossRefGoogle ScholarPubMed
Lubar, J. F., Swartwood, M. O., Swartwood, J. N., & O’Donnell, P. H. (1995). Evaluation of the effectiveness of EEG neurofeedback training for ADHD in a clinical setting as measured by changes in T.O.V.A. scores, behavioral ratings, and WISC-R performance. Biofeedback and Self-Regulation, 20(1), 8399. https://doi.org/10.1007/BF01712768 CrossRefGoogle Scholar
Mann, C. A., Lubar, J. F., Zimmerman, A. W., Miller, C. A., & Muenchen, R. A. (1992). Quantitative analysis of EEG in boys with attention-deficit-hyperactivity disorder: Controlled study with clinical implications. Pediatric Neurology, 8(1), 3036. https://doi.org/10.1016/0887-8994(92)90049-5 CrossRefGoogle ScholarPubMed
Martel, M. M., Levinson, C. A., Langer, J. K., & Nigg, J. T. (2016). A network analysis of developmental change in ADHD symptom structure from preschool to adulthood. Clinical Psychological Science, 4(6), 9881001. https://doi.org/10.1177/2167702615618664 CrossRefGoogle ScholarPubMed
Martel, M. M., & Nigg, J. T. (2006). Child ADHD and personality/temperament traits of reactive and effortful control, resiliency, and emotionality. Journal of Child Psychology and Psychiatry and Allied Disciplines, 47(11), 11751183. https://doi.org/10.1111/j.1469-7610.2006.01629.x CrossRefGoogle ScholarPubMed
Mash, E. J., & Hunsley, J. (2005). Evidence-based assesment of child and adolescent disorders: Issues and challenges. Journal of Clinical Child and Adolescent Psychology, 34(3), 362379.CrossRefGoogle Scholar
Monastra, V. J., Lubar, J. F., & Linden, M. (2001). The development of a quantitative electroencephalographic scanning process for attention deficit-hyperactivity disorder: Reliability and validity studies. Neuropsychology, 15(1), 136144. https://doi.org/10.1037/0894-4105.15.1.136 CrossRefGoogle ScholarPubMed
Monastra, V. J., Lubar, J. F., Linden, M., VanDeusen, P., Green, G., Wing, W., Phillips, A., & Fenger, T. N. (1999). Assessing attention deficit hyperactivity disorder via quantitative electroencephalography: An initial validation study. Neuropsychology, 13(3), 424433. https://doi.org/10.1037//0894-4105.13.3.424 CrossRefGoogle ScholarPubMed
Nasab, S. A., Panahi, S., Ghassemi, F., Jafari, S., Rajagopal, K., Ghosh, D., & Perc, M. (2022). Functional neuronal networks reveal emotional processing differences in children with ADHD. Cognitive Neurodynamics, 16(1), 91100. https://link.springer.com/article/10.1007/s11571-021-09699-6 CrossRefGoogle Scholar
Nishitani, N. (2003). Dynamics of cognitive processing in the human hippocampus by neuromagnetic and neurochemical assessments. NeuroImage, 20(1), 561571. https://doi.org/10.1016/S1053-8119(03)00280-5 CrossRefGoogle ScholarPubMed
Nymberg, C., Jia, T., Lubbe, S., Ruggeri, B., Desrivieres, S., Barker, G., Büchel, C., Fauth-Buehler, M., Cattrell, A., Conrod, P., Flor, H., Gallinat, J., Garavan, H., Heinz, A., Ittermann, B., Lawrence, C., Mann, K., Nees, F., Salatino-Oliveira, A., …Schumann, G. (2013). Neural mechanisms of attention-deficit/hyperactivity disorder symptoms are stratified by MAOA genotype. Biological Psychiatry, 74(8), 607614. https://doi.org/10.1016/j.biopsych.2013.03.027 CrossRefGoogle ScholarPubMed
Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J. M. (2011). FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, 2011, 156869. https://doi.org/10.1155/2011/156869 CrossRefGoogle ScholarPubMed
Pelham, W., Fabiano, G. A., & Massetti, G. M. (2005). Evidence-based assessment of attention deficit hyperactivity disorder in children and adolescents. Journal of Clinical Child and Adolescent Psychology, 34(3), 449476. https://doi.org/10.1207/s15374424jccp3403_5 CrossRefGoogle ScholarPubMed
Quinn, P. O. (2008). Attention-deficit/hyperactivity disorder and its comorbidities in women and girls: An evolving picture. Current Psychiatry Reports, 10(5), 419423. https://doi.org/10.1007/s11920-008-0067-5 CrossRefGoogle ScholarPubMed
Rosen, P. J., Walerius, D. M., Fogleman, N. D., & Factor, P. I. (2015). The association of emotional lability and emotional and behavioral difficulties among children with and without ADHD. ADHD Attention Deficit and Hyperactivity Disorders, 7(4), 281294. https://doi.org/10.1007/s12402-015-0175-0 CrossRefGoogle ScholarPubMed
Ruscio, J. (2008). A probability-based measure of effect size: Robustness to base rates and other factors. Psychological Methods, 13(1), 1930. https://doi.org/10.1037/1082-989X.13.1.19 CrossRefGoogle ScholarPubMed
Saalmann, Y. B., Pinsk, M. A., Wang, L., Li, X., & Kastner, S. (2012). The pulvinar regulates information transmission between cortical areas based on attention demands. Science, 337(6095), 753766. https://doi.org/10.1126/science.1223082 CrossRefGoogle ScholarPubMed
Sauseng, P., Klimesch, W., Stadler, W., Schabus, M., Doppelmayr, M., Hanslmayr, S., Gruber, W. R., & Birbaumer, N. (2005). A shift of visual spatial attention is selectively associated with human EEG alpha activity. European Journal of Neuroscience, 22(11), 29172926. https://doi.org/10.1111/j.1460-9568.2005.04482.x CrossRefGoogle ScholarPubMed
Scarpelli, S., Gorgoni, M., D’atri, A., Reda, F., & De Gennaro, L. (2019). Advances in understanding the relationship between sleep and attention deficit-hyperactivity disorder (ADHD). Journal of Clinical Medicine, 8(10). https://doi.org/10.3390/jcm8101737 CrossRefGoogle ScholarPubMed
Schlochtermeier, L., Stoy, M., Schlagenhauf, F., Wrase, J., Park, S. Q., Friedel, E., Huss, M., Lehmkuhl, U., Heinz, A., & Ströhle, A. (2011). Childhood methylphenidate treatment of ADHD and response to affective stimuli. European Neuropsychopharmacology, 21(8), 646654. https://doi.org/10.1016/j.euroneuro.2010.05.001 CrossRefGoogle ScholarPubMed
Schupp, H. T., Flaisch, T., Stockburger, J., & Junghöfer, M. (2006). Emotion and attention: Event-Related brain potential studies. Progress in Brain Research, 156, 3151.CrossRefGoogle ScholarPubMed
Sciutto, M. J., Nolfi, C. J., & Bluhm, C. (2004). Effects of child gender and symptom type on referrals for ADHD by elementary school teachers. Journal of Emotional and Behavioral Disorders. https://doi.org/10.1177/10634266040120040501 CrossRefGoogle Scholar
Segalowitz, S. J., Santesso, D. L., & Jetha, M. K. (2010). Electrophysiological changes during adolescence: A review. Brain and Cognition, 72(1), 86100. https://doi.org/10.1016/j.bandc.2009.10.003 CrossRefGoogle ScholarPubMed
Skogli, E. W., Teicher, M. H., Andersen, P. N., Hovik, K. T., & Øie, M. (2013). ADHD in girls and boys—Gender differences in co-existing symptoms and executive function measures. BMC Psychiatry. https://doi.org/10.1186/1471-244X-13-298 CrossRefGoogle ScholarPubMed
Stange, J. P., MacNamara, A., Barnas, O., Kennedy, A. E., Hajcak, G., Phan, K. L., & Klumpp, H. (2017). Neural markers of attention to aversive pictures predict response to cognitive behavioral therapy in anxiety and depression. Biological Psychology, 123, 269277. https://doi.org/10.1016/j.biopsycho.2016.10.009 CrossRefGoogle ScholarPubMed
Stoet, G. (2010). PsyToolkit: A software package for programming psychological experiments using Linux. Behavior Research Methods, 42(4), 10961104. https://doi.org/10.3758/BRM.42.4.1096 CrossRefGoogle ScholarPubMed
Stoet, G. (2017). PsyToolkit: A novel web-based method for running online questionnaires and reaction-time experiments. Teaching of Psychology, 44(1), 2431. https://doi.org/10.1177/0098628316677643 CrossRefGoogle Scholar
Ter Huurne, N., Onnink, M., Kan, C., Franke, B., Buitelaar, J., & Jensen, O. (2013). Behavioral consequences of aberrant alpha lateralization in attention-deficit/hyperactivity disorder. Biological Psychiatry, 74(3), 227233. https://doi.org/10.1016/j.biopsych.2013.02.001 CrossRefGoogle ScholarPubMed
Uhlhaas, P. J., & Singer, W. (2011). The development of neural synchrony and large-scale cortical networks during adolescence: Relevance for the pathophysiology of schizophrenia and neurodevelopmental hypothesis. Schizophrenia Bulletin, 37(3), 514523. https://doi.org/10.1093/schbul/sbr034 CrossRefGoogle ScholarPubMed
Vasilev, C. A. A., Crowell, S. E. E., Beauchaine, T. P. P., Mead, H. K. K., & Gatzke-Kopp, L. M. M. (2009). Correspondence between physiological and self-report measures of emotion dysregulation: A longitudinal investigation of youth with and without psychopathology. Journal of Child Psychology and Psychiatry, 50(11), 13571364. https://doi.org/10.1111/j.1469-7610.2009.02172.x CrossRefGoogle ScholarPubMed
Vollebregt, M. A., Zumer, J. M., ter Huurne, N., Buitelaar, J. K., & Jensen, O. (2016). Posterior alpha oscillations reflect attentional problems in boys with Attention Deficit Hyperactivity Disorder. Clinical Neurophysiology, 127(5), 21822191. https://doi.org/10.1016/j.clinph.2016.01.021 CrossRefGoogle ScholarPubMed
Wang, Z., Dong, F., Sun, Y., Wang, J., Zhang, M., Xue, T., Ren, Y., Lv, X., Yuan, K., & Yu, D. (2022). Increased resting-state alpha coherence and impaired inhibition control in young smokers. Frontiers in Neuroscience, 16, 1026835.CrossRefGoogle ScholarPubMed
Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: The PANAS scales. Journal of Personality and Social Psychology, 54(6), 10631070. https://doi.org/10.1521/soco_2012_1006 CrossRefGoogle ScholarPubMed
Watson, D., Clark, L. A. L. A. L. A., Tellegen, A., Tellegan, A., Tellegen, A., & Tellegan, A. (1988). Development and validation of brief measures of positive and negative affect: The PANAS scales. Journal of Personality and Social Psychology, 54(6), 10631070. https://doi.org/10.1037/0022-3514.54.6.1063 CrossRefGoogle ScholarPubMed
Wechsler, D. (2003). Wechsler intelligence scale for children-Fourth Edition (WISC-IV). The Psychological Corporation.Google Scholar
Wechsler, D. (2008). Wechsler adult intelligence scale-Fourth Edition (WAIS-IV). APA PsycTests.Google Scholar
Weinberg, A., & Klonsky, E. D. D. (2009). Measurement of emotion dysregulation in adolescents. Psychological Assessment, 21(4), 616621. https://doi.org/10.1037/a0016669 CrossRefGoogle ScholarPubMed
Wessing, I., Rehbein, M. A., Romer, G., Achtergarde, S., Dobel, C., Zwitserlood, P., Fürniss, T., & Junghöfer, M. (2015). Cognitive emotion regulation in children: Reappraisal of emotional faces modulates neural source activity in a frontoparietal network. Developmental Cognitive Neuroscience, 13, 110.CrossRefGoogle Scholar
Yu, X., Liu, L., Chen, W., Cao, Q., Zepf, F. D., Ji, G., Wu, Z., An, L., Wang, P., Qian, Q., Zang, Y., Sun, L., & Wang, Y. (2020). Integrity of amygdala subregion-based functional networks and emotional lability in drug-naïve boys with ADHD. Journal of Attention Disorders, 24(12). https://doi.org/10.1177/1087054716661419 CrossRefGoogle ScholarPubMed
Zhang, D. W., Li, H., Wu, Z., Zhao, Q., Song, Y., Liu, L., Qian, Q., Wang, Y., Roodenrys, S., Johnstone, S. J., De Blasio, F. M., & Sun, L. (2019). Electroencephalogram theta/beta ratio and spectral power correlates of executive functions in children and adolescents with AD/HD. Journal of Attention Disorders, 23(7), 721732. https://doi.org/10.1177/1087054717718263 CrossRefGoogle ScholarPubMed
Zhang, W., Li, X., Liu, X., Duan, X., Wang, D., & Shen, J. (2013). Distraction reduces theta synchronization in emotion regulation during adolescence. Neuroscience Letters, 550, 8186. https://doi.org/10.1016/j.neulet.2013.05.070 CrossRefGoogle ScholarPubMed
Supplementary material: File

Takács et al. supplementary material

Tables S1-S2

Download Takács et al. supplementary material(File)
File 33.8 KB