Skip to main content
Log in

The effect of training in male prepubertal and pubertal monozygotic twins

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Nine male pairs of monozygotic twins aged 11–14 years, height 147 (7.6) cm and body mass 39.7 (9.6) kg, participated in this study. Twin zygocity was tested using morphological, dermatoglyphic and hematologic methods, and Tanner's five stages were used for the evaluation of biological maturation. One twin from each pair undertook training for 6 months, three times a week, with running at 85–120% of the lactate anaerobic threshold (LT). Anthropometrics, determination of maximum O2 uptake (O2max), LT and maximal blood lactate concentration ([La]max) was carried out before, during and after training. No significant difference existed between the trained twins and their untrained brothers before training. After training, the trained twins increased theirO2max (per kg body mass) by 10.6% and their LT by 18.2% (P<0.01), reaching values that differed significantly from those of their untrained brothers [57.5 (3.6) ml·kg−1·min−1 vs 55.4 (3.3) ml·kg−1·min−1 and 13.4 (1.1) km·h−1 vs 12.7 (1.1) km·h−1, respectively]. In addition, in the trained twins relative body fat was reduced (P<0.05) from 17.8 to 16.2% and their somatotype altered significantly (decrease of endomorphy and mesomorphy and increase of ectomorphy), while in the untrained twins there was no change in these parameters. Both groups of twins significantly increased their absoluteO2max after the 6 months of training, the trained by 14,9% [from 2.08 (0.43) to 2.37 (0.45) l·min−1] and the untrained by 10.5% [from 2.10 (0.41) to 2.32 (0.47) l·min−1], but no difference was registered between them. A comparison of the intrapair changes inO2max of prepubertal and pubertal twins showed an influence of training in the prepubertal (19.3% vs 5.2%) but not in the pubertal twins (12.7% vs 13.1%). Using analysis of variance, the relative importance of training, heredity and their interaction was evaluated to be 20%, 70% and 10%, respectively, for the change in body fat, 35%, 45% and 20%, respectively, for the change in relativeO2max and 25–30%, 50–60% and 15–20%, respectively, for the change in LT. In conclusion, training during pubertal growth can favour aerobic power (depending on body composition) as well as aerobic capacity, but it has no effect on absoluteO2max. Genetic control seems to have a strong effect on the extent of adaptations, and the genotype—training interaction explains a small, but prominent part of them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Albertsson-Wikland K, Rosberg S (1988) Analyses of 24-hours growth hormone profiles in children: relation to growth. J Clin Endocrinol Metab 67:493–500

    CAS  PubMed  Google Scholar 

  • Andersen KL, Rutenfranz J, Seliger V (1978) The rate of growth in maximal aerobic power of children in Norway. In: Borms J, Hebbelinck M (eds) Medicine and sport: pediatric work physiology. Basel Karger, pp. 52–55

    Google Scholar 

  • Ǻstrand P-O (1952) Experimental studies of physical working capacity in relation to sex and age. Ejnar Munksgaard, Copenhagen

  • Bailey DA, Ross WD, Mirwald RL, Weese C (1978) Size association of maximal aerobic power during growth in boys. In: Borms J, Hebbelinck M (eds) Medicine and sport: pediatric work physiology. Basel Karger, pp. 52–55

    Google Scholar 

  • Bar-Or O, Zwiren LD (1973) Physiological effects of frequency and content variation of physical education classes and of endurance conditioning on 9 to 10 year old boys and girls. In: Bar-Or O (ed): Pediatric work physiology. 4th International Symposium. Wingate Institute, Israel, pp 198–208

    Google Scholar 

  • Becker DM, Vaccaro P (1983) Anaerobic threshold alterations caused by endurance training in young children. J Sports Med Phys Fitness 23:445–449

    CAS  PubMed  Google Scholar 

  • Bouchard C (1986) Genetics of aerobic power and capacity. In: Malina RM, Bouchard C (eds) Sport and human genetics. Human Kinetics, Champaign, Illinois, pp. 60–88

  • Brown CH, Harrower JR, Deeter MF (1972) The effects of cross-country running on pre-adolescent girls. Med Sci Sports 4:1–5

    CAS  PubMed  Google Scholar 

  • Daniels J, Oldridge N (1971) Changes in oxygen consumption of young boys during growth and running training. Med Sci Sports 3:161–165

    CAS  PubMed  Google Scholar 

  • Davis JA, Frank MH, Whipp BJ, Wasserman K (1979) Anaerobic threshold alterations caused by endurance training in middle- aged men. J Appl Physiol 46:1039–1046

    CAS  PubMed  Google Scholar 

  • Denis C, Fouquet R, Poty P, Geyssant A, Lacour JR (1982) Effect of 40 weeks of endurance training on the anaerobic threshold. Int J Sports Med 3:208–214

    CAS  PubMed  Google Scholar 

  • Denis C, Dormois D, Lacour JR (1984) Endurance training,O2max, and OBLA: a longitudinal study of two different age groups. Int J Sports Med 5:167–173

    CAS  PubMed  Google Scholar 

  • Dionne FT, Turcotte L, Thibault M-C, Boulay MR, Skinner JS, Bouchard C (1991) Mitochondrial DNA sequence polymorphism,O2max, and response to endurance training. Med Sci Sports Exerc 23:177–185

    CAS  PubMed  Google Scholar 

  • Durnin JVGA, Rahaman MM (1967) The assessment of the amount of fat in the human body from measurements of skinfold thickness. Br J Nutr 21:681–689

    CAS  PubMed  Google Scholar 

  • Ekblom B (1969) Effect of physical training in adolescent boys. J Appl Physiol 27:350–355

    CAS  PubMed  Google Scholar 

  • Ekblom B, Ǻstrand PO, Saltin B, Stenberg J, Wallstrom B (1968) Effect of training on the circulatory response to exercise. J Appl Physiol 24:518–528

    CAS  PubMed  Google Scholar 

  • Eriksson BO (1972) Physical training, oxygen supply and muscle metabolism in 11–13-year old boys. Acta Physiol Scand Suppl 384:1–48

    CAS  PubMed  Google Scholar 

  • Eriksson BO, Koch G (1973) Effect of physical training on hemodynamic response during submaximal and maximal exercise in 11–13-year old boys. Acta Physiol Scand 87:27–39

    CAS  PubMed  Google Scholar 

  • Eriksson BO, Karlsson J, Saltin B (1971) Muscle metabolites during exercise in pubertal boys. Acta Paediatr Scand Suppl 217:154–157

    CAS  PubMed  Google Scholar 

  • Eriksson BO, Gollnick PD, Saltin B (1973) Muscle metabolism and enzyme activities after training in boys 11–13 years old. Acta Physiol Scand 87:485–497

    CAS  PubMed  Google Scholar 

  • Fahey TD, Del Valle-Zuris A, Ochlsen G, Tried M, Seymour J (1979) Pubertal stage differences in hormonal and hematological responses to maximal exercise in males. J Appl Physiol 46:823–827

    CAS  PubMed  Google Scholar 

  • Falconer DS (1989) Introduction to quantitative genetics. Longman Scientific and Technical, Essex

  • Fischbein S (1977a) Intra-pair similarity in physical growth of monozygotic and dizygotic twins during puberty. Ann Hum Biol 4:417–430

    CAS  PubMed  Google Scholar 

  • Fischbein S (1977b) Onset of puberty in MZ and DZ twins. Acta Genet Gemellol 26:151–158

    CAS  Google Scholar 

  • Gerhardus H (1980) Über den Einfluss eines Leistungs-Ausdauer-trainings im Kindesalter auf kardiopulmonale Parameter. Dr. Arbeit, DSHS Koeln

  • Greene SA, Torresani T, Prader A (1987) Growth hormone response to a standardized exercise test in relation to puberty and stature. Arch Dis Child 62:53–56

    CAS  PubMed  Google Scholar 

  • Heath BH, Carter JEL (1967) A modified somatotype method. Am J Anthrop 27:57–74

    CAS  Google Scholar 

  • Heck H, Mueller R, Muecke S, Hollmann W (1985) Verhalten von Pulsfrequenz und Laktat bei unterschiedlicher Beschaffenheit der Laufstrecke im Vergleich zum Laufband mit verschiedenen Anstiegswinkeln. In: Franz I-W, Mellerowicz H, Novack W (eds) Training Sport zur Prävention und Rehabilitation in der technisierten Umwelt. Springer Verlag, Berlin

  • Hermansen L, Oseid S (1971) Direct and indirect estimation of oxygen uptake in pre-pubertal boys. Acta Paediatr Scand Suppl 217:18–23

    CAS  PubMed  Google Scholar 

  • Kemper HCG, Verschuur R (1981) Maximal aerobic power in 13- and 14- year-old teenagers in relation to biologic age. Int J Sports Med 2:97–10

    CAS  PubMed  Google Scholar 

  • Kindermann W, Huber G, Keul J (1975) Anaerobe Kapazität bei Kindern und Jugendlichen in Beziehung zum Erwachsenen. Sportarzt Sportmed 6:112–115

    Google Scholar 

  • Klissouras V (1977) Twin studies on functional capacity. In: Weiner JS (ed) Physiological variation and its genetic basis. Taylor and Francis, London, pp. 43–55

  • Kobayashi K, Kitamura K, Miura M, Sodeyama H, Murase Y, Miyashita M, Matsui H (1978) Aerobic power as related to body growth and training in Japanese boys: a longitudinal study. J Appl Physiol 44:666–672

    CAS  PubMed  Google Scholar 

  • Krahenbuhl GS, Skinner JS, Kohrt WM (1985) Developmental aspects of maximal aerobic power in children. Exerc Sport Sci Rev 13:503–538

    CAS  PubMed  Google Scholar 

  • Lussier L, Buskirk ER (1977) Effects of an endurance training regimen on assessment of work capacity in prepubertal children. Ann N Y Acad Sci 301:734–741

    CAS  PubMed  Google Scholar 

  • Mader A, Liesen H, Heck H, Phillippi H, Schuerch PM, Hollmann W (1976) Zur Beurteilung der sportartspezifischen Ausdauerleistungsfähigkeit. Sportarzt. u Sportmed 27:80–88 and 109–112

    Google Scholar 

  • Mahon AD, Vaccaro P (1989) Ventilatory threshold andO2max changes in children following endurance training. Med Sci Sports Exerc 21:425–431

    CAS  PubMed  Google Scholar 

  • Mahon AD, Vaccaro P (1994) Cardiovascular adaptations in 8- to 12-year-old boys following a 14-week running program. Can J Appl Physiol 19:139–150

    CAS  PubMed  Google Scholar 

  • Martha PMJR, Rogol AD, Veldhuis JD, Kerrigan JR, Goodman DW, Blizzard RM (1989) Alterations in the pulsatile properties of circulating growth hormone concentrations during puberty in boys. J Clin Endocrinol Metab 69:563–570

    CAS  PubMed  Google Scholar 

  • Martha PMJR, Goodman DW, Blizzard RM, Rogol AD, Veldhuis JD (1992) Endogenous growth hormone secretion and clearance rates in normal boys, as determined by deconvolution analysis: relationship to age, pubertal status and body mass. J Clin Endocrinol Metab 74:336–344

    CAS  PubMed  Google Scholar 

  • Massicotte DR, MacNab RBJ (1974) Cardiorespiratory adaptations to training at specified intensities in children. Med Sci Sports 6:242–246

    CAS  PubMed  Google Scholar 

  • Mauras N, Blizzard RM, Link K, Johnson ML, Rogol AD, Veldhuis JD (1987) Augmentation of growth hormone secretion during puberty: evidence for a pulse amplitude-modulated phenomenon. J Clin Endocrinol Metab 64:596–601

    CAS  PubMed  Google Scholar 

  • Mirwald RL, Bailey DA, Cameron N, Rasmussen RL (1981) Longitudinal comparison of aerobic power in active and inactive boys aged 7.0 to 17.0 years. Ann Hum Biol 8:405–414

    CAS  PubMed  Google Scholar 

  • Oscai LB (1973) The role of exercise in body mass control. Exerc Sport Sci Rev 1:103–123

    CAS  PubMed  Google Scholar 

  • Parizkova J (1970) Longitudinal study of developmental changes in length, breadth and circumferential measurements in adolescent boys with various physical activity. Anthropologie 8:73–79

    Google Scholar 

  • Parizkova J, Spynarova S (1975) Longitudinal study of the changes in body composition, body build and aerobic capacity in boys of different physical activity from 11 to 15 years. In: Mellerowicz, H, Jokl E, Hansen G (eds) Ergebnisse der Ergometrie. Perimed, Erlangen

  • Paterson DH, Cunningham DA, Bumstead LA (1986) Recovery O2 and blood lactic acid: longitudinal analysis in boys aged 11 to 15 years. Eur J Appl Physiol 55:93–99

    CAS  Google Scholar 

  • Petratis MM, Sady SP, Savage MP, Thomson WH (1983) Effects of 10 weeks exercise training on cardiorespiratory fitness of prepubescent boys and adult men (abstract). Med Sci Sports Exerc 15:107

    Google Scholar 

  • Pollock ML (1973) The quantification of endurance training programs. Exerc Sport Sci Rev 1:155–158

    CAS  PubMed  Google Scholar 

  • Prud'Homme D, Bouchard C, Leblanc C, Landry F, Fontaine E (1984) Sensitivity of maximal aerobic power to training is genotype-dependent. Med Sci Sports Exerc 16:489–493

    CAS  PubMed  Google Scholar 

  • Ready AE, Quinney HA (1982) Alterations in anaerobic threshold as the result of endurance training and detraining. Med Sci Sports Exerc 14:292–296

    CAS  PubMed  Google Scholar 

  • Reznickova M, Kotulan J, Placheta Z (1981) Intensive Bewegungsaktivität und Körperentwicklung. Med Sport 21:58–62

    Google Scholar 

  • Rivera MA, Dionne FT, Simoneau J-A, Perusse L, Chagnon M, Chagnon Y, Gagnon J, Leon S, Rao DC, Skinner JS, Wilmore JH, Bouchard C (1997) Muscle-specific creatine kinase gene polymorphism andO2max in the HERITAGE Family Study. Med Sci Sports Exerc 29:1311–1317

    CAS  PubMed  Google Scholar 

  • Rivera MA, Perusse L, Simoneau J-A, Gagnon J, Dionne FT, Leon S, Skinner JS, Wilmore JH, Province M, Rao DC, Bouchard C (1999) Linkage between a muscle-specific CK gene marker andO2max in the HERITAGE Family Study. Med Sci Sports Exerc 31:698–701

    CAS  PubMed  Google Scholar 

  • Rotstein A, Dotan R, Bar-Or O, Tenenbaum G (1986) Effect of training on anaerobic threshold, maximal aerobic power and anaerobic performance of preadolescent boys. Int J Sports Med 7:281–286

    CAS  PubMed  Google Scholar 

  • Schmuecker, Hollmann W (1973) Zur Frage der Trainierbarkeit von Herz und Kreislauf bei Kindern bis zum 10. Lebensjahr. Sportarzt Sportmed 10:231–235 and 11:263–265

  • Sjodin B, Jacobs I (1981) Onset of Blood Lactate Accumulation and Marathon Running Performance. Int J Sports Med 2:23–26

    CAS  PubMed  Google Scholar 

  • Sklad M (1977) The rate of growth and maturing of twins. Acta Genet Gemellol 26:221–237

    CAS  Google Scholar 

  • Stewart KJ, Gutin B (1976) Effects of physical training on cardiorespiratory fitness in children. Res Q 47:110–120

    CAS  PubMed  Google Scholar 

  • Tanner JM (1962) Wachstum und Reifung des Menschen. Georg Thieme Verlag, Stuttgart

  • Vaccaro P, Clarke DH (1978) Cardiorespiratory alterations in 9 to 11 year old children following a season of competitive swimming. Med Sci Sports 10:204–207

    CAS  PubMed  Google Scholar 

  • Wanne O, Valimaki I (1983) The influence of sports training on growth in school children. Scand J Sports Sci 5:41–44

    Google Scholar 

  • Weber G, Kartodihardjo W, Klissouras V (1976) Growth and physical training with reference to heredity. J Appl Physiol 40:211–215

    CAS  PubMed  Google Scholar 

  • Weltman A, Weltman JY, Schurrer R, Evans WS, Veldhuis JD, Rogol D (1992) Endurance training amplifies the pulsatile release of growth hormone: effects of training intensity. J Appl Physiol 72:2188–2196

    CAS  PubMed  Google Scholar 

  • Wilson RS (1980) Bloodtyping and twin zygosity. Reassessment and extension. Acta Genet Med Gemellol 29:103–120

    CAS  PubMed  Google Scholar 

  • Wirth A, Traeger E, Scheele K, Mayer D, Diehm K, Reischle K. Weicker H (1978) Cardiopulmonary adjustment and metabolic response to maximal and submaximal physical exercise of boys and girls at different stages of maturity. Eur J Appl Physiol 39:229–240

    CAS  Google Scholar 

  • Yoshida T, Ishiko I, Muraoka I (1980) Effect of endurance training on cardiorespiratory functions of 5-year-old children. Int J Sports Med 1:91–94

    Google Scholar 

Download references

Acknowledgements

The authors thank Professor S. Chatziconstantinou and Dr. S. Kangas for their medical cooperation, the Regional Center for Blood Donation of Hippocratic Hospital in Athens for the identification of red blood cell antigens, and especially the twins and their parents for their voluntary participation in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apostolos Danis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danis, A., Kyriazis, Y. & Klissouras, V. The effect of training in male prepubertal and pubertal monozygotic twins. Eur J Appl Physiol 89, 309–318 (2003). https://doi.org/10.1007/s00421-002-0785-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-002-0785-z

Keywords

Navigation