Skip to main content
Log in

Biomedical soft robots: current status and perspective

  • Review Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

This paper reviews the current status of soft robots in biomedical field. Soft robots are made of materials that have comparable modulus of elasticity to that of biological systems. Several advantages of soft robots over rigid robots are safe human interaction, ease of adaptation with wearable electronics and simpler gripping. We review design factors of soft robots including modeling, controls, actuation, fabrication and application, as well as their limitations and future work. For modeling, we survey kinematic, multibody and numerical finite element methods. Finite element methods are better suited for the analysis of soft robots, since they can accurately model nonlinearities in geometry and materials. However, their real-time integration with controls is challenging. We categorize the controls of soft robots as model-based and model-free. Model-free controllers do not rely on an explicit analytical or numerical model of the soft robot to perform actuation. Actuation is the ability to exert a force using actuators such as shape memory alloys, fluid gels, elastomers and piezoelectrics. Nonlinear geometry and materials of soft robots restrict using conventional rigid body controls. The fabrication techniques used for soft robots differ significantly from that of rigid robots. We survey a wide range of techniques used for fabrication of soft robots from simple molding to more advanced additive manufacturing methods such as 3D printing. We discuss the applications and limitations of biomedical soft robots covering aspects such as functionality, ease of use and cost. The paper concludes with the future discoveries in the emerging field of soft robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Acemoglu D, Restrepo P. Robots and jobs: evidence from US labor markets. National Bureau of Economic Research Working Paper Series No. 23285. 2017.

  2. Graetz G, Michaels G. Review of economics and statistics. Robots Work MIT Press J. 2018;100(5):753–68.

    Google Scholar 

  3. Bragança S, Costa E, Castellucci I, Arezes PM. A brief overview of the use of collaborative robots in industry 4.0: human role and safety. In: Arezes P, et al. editors. Occupational and environmental safety and health Vol 202. Springer: Cham; 2019.

    Chapter  Google Scholar 

  4. Fernando Y, Mathath A, Murshid MA. Improving productivity: a review of robotic applications in food industry. Int J Robot Appl Technol IJRAT. 2016;4(1):43–62.

    Google Scholar 

  5. Hall AK, et al. Acceptance and perceived usefulness of robots to assist with activities of daily living and healthcare tasks. Assist Technol. 2019;31(3):133–40.

    Article  Google Scholar 

  6. Roldán JJ, et al. Robots in agriculture: state of art and practical experiences. In: Antonio JRN, editors. Service Robots. Intech Open. 2017. https://doi.org/10.5772/intechopen.69874.

  7. Valavanis KP, Vachtsevanos GJ, editors. Future of unmanned aviation. In: Valavanis KP, Vachtsevanos GJ, editors. Handbook of unmanned aerial vehicles. Springer: Dordrecht. 2015. p. 2993–3009.

  8. Calanca A, Muradore R, Fiorini P. A review of algorithms for compliant control of stiff and fixed-compliance robots. IEEEASME Trans Mechatron. 2015;21(2):613–24.

    Article  Google Scholar 

  9. Lee C, et al. Soft robot review. Int J Control Autom Syst. 2017;15(1):3–15.

    Article  Google Scholar 

  10. Deimel R, Brock O. A novel type of compliant and underactuated robotic hand for dexterous grasping. Int J Robot Res. 2016;35(1–3):161–85.

    Article  Google Scholar 

  11. Manti M, Hassan T, Passetti G, D’Elia N, Laschi C, Cianchetti M. A bioinspired soft robotic gripper for adaptable and effective grasping. Soft Robot. 2015;2(3):107–16. https://doi.org/10.1089/soro.2015.0009.

    Article  Google Scholar 

  12. Laschi C, Mazzolai B, Cianchetti M. Soft robotics: technologies and systems pushing the boundaries of robot abilities. Sci Robot. 2016;1(1):eaah3690. https://doi.org/10.1126/scirobotics.aah3690.

    Article  Google Scholar 

  13. Yang G-Z, et al. The grand challenges of science robotics. Sci Robot. 2018;3(14):eaar7650. https://doi.org/10.1126/scirobotics.aar7650.

    Article  Google Scholar 

  14. Filippini R, Sen S, Bicchi A. Toward soft robots you can depend on. IEEE Robot Autom Mag. 2008;15(3):31–41. https://doi.org/10.1109/MRA.2008.927696.

    Article  Google Scholar 

  15. Cowan L, Walker I. ‘Soft’ continuum robots: the interaction of continuous and discrete elements. Artif Life. The 11th International Conference on the Synthesis and Simulation of Living Systems. Winchester, United Kingdom. 2008: 126–33. http://www.alife.org/conference/alife-11.

  16. Shepherd RF, et al. Multigait soft robot. Proc Natl Acad Sci. 2011;108(51):20400–3. https://doi.org/10.1073/pnas.1116564108.

    Article  Google Scholar 

  17. Calisti M, et al. Design and development of a soft robot with crawling and grasping capabilities. In: 2012 IEEE international conference on robotics and automation, St Paul, MN, USA, 2012. p. 4950–55. https://doi.org/10.1109/icra.2012.6224671.

  18. Rossiter J, Hauser H. Soft robotics—the next industrial revolution? [Industrial Activities]. IEEE Robot Autom Mag. 2016;23(3):17–20. https://doi.org/10.1109/MRA.2016.2588018.

    Article  Google Scholar 

  19. Majidi C. Soft robotics: a perspective—current trends and prospects for the future. Soft Robot. 2014;1(1):5–11. https://doi.org/10.1089/soro.2013.0001.

    Article  Google Scholar 

  20. Polygerinos P, et al. Soft robotics: review of fluid-driven intrinsically soft devices; manufacturing, sensing, control, and applications in human-robot interaction: review of fluid-driven intrinsically soft robots. Adv Eng Mater. 2017;19(12):1700016. https://doi.org/10.1002/adem.201700016.

    Article  Google Scholar 

  21. Deimel R, Brock O. A compliant hand based on a novel pneumatic actuator. In: 2013 IEEE international conference on robotics and automation, Karlsruhe, Germany, 2013. p. 2047–53. https://doi.org/10.1109/icra.2013.6630851.

  22. Manti M, Pratesi A, Falotico E, Cianchetti M, Laschi C. Soft assistive robot for personal care of elderly people. In: 2016 6th IEEE international conference on biomedical robotics and biomechatronics (BioRob), 2016. p. 833–8. https://doi.org/10.1109/biorob.2016.7523731.

  23. Ansari Y, Manti M, Falotico E, Mollard Y, Cianchetti M, Laschi C. Towards the development of a soft manipulator as an assistive robot for personal care of elderly people. Int J Adv Robot Syst. 2017;14(2):1729881416687132. https://doi.org/10.1177/1729881416687132.

    Article  Google Scholar 

  24. She Y, Li C, Cleary J, Su H-J. Design and fabrication of a soft robotic hand with embedded actuators and sensors. J Mech Robot. 2015;7(2):021007. https://doi.org/10.1115/1.4029497.

    Article  Google Scholar 

  25. Yamada Y, Morizono M, Umetani U, Takahashi T. Highly soft viscoelastic robot skin with a contact object-location-sensing capability. IEEE Trans Ind Electron. 2005;52(4):960–8. https://doi.org/10.1109/TIE.2005.851654.

    Article  Google Scholar 

  26. Morrow J, et al. Improving soft pneumatic actuator fingers through integration of soft sensors, position and force control, and rigid fingernails. In: 2016 IEEE international conference on robotics and automation (ICRA), Stockholm, Sweden, 2016. p. 5024–31. https://doi.org/10.1109/icra.2016.7487707.

  27. Stokes AA, Shepherd RF, Morin SA, Ilievski F, Whitesides GM. A hybrid combining hard and soft robots. Soft Robot. 2014;1(1):70–4. https://doi.org/10.1089/soro.2013.0002.

    Article  Google Scholar 

  28. Tee BC-K, Wang C, Allen R, Bao Z. An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat Nanotechnol. 2012;7:825.

    Article  Google Scholar 

  29. Terryn S, Brancart J, Lefeber D, Van Assche G, Vanderborght B. Self-healing soft pneumatic robots. Sci Robot. 2017;2(9):eaan4268. https://doi.org/10.1126/scirobotics.aan4268.

    Article  Google Scholar 

  30. Markvicka EJ, Bartlett MD, Huang X, Majidi C. An autonomously electrically self-healing liquid metal–elastomer composite for robust soft-matter robotics and electronics. Nat Mater. 2018;17(7):618–24. https://doi.org/10.1038/s41563-018-0084-7.

    Article  Google Scholar 

  31. Duchaine V, Lauzier N, Baril M, Lacasse M-A, Gosselin C. A flexible robot skin for safe physical human robot interaction. In: 2009 IEEE international conference on robotics and automation, Kobe, 2009. p. 3676–81. https://doi.org/10.1109/robot.2009.5152595.

  32. Rus D, Tolley MT. Design, fabrication and control of soft robots. Nature. 2015;521:467.

    Article  Google Scholar 

  33. Bartlett NW, et al. A 3D-printed, functionally graded soft robot powered by combustion. Science. 2015;349(6244):161–5. https://doi.org/10.1126/science.aab0129.

    Article  Google Scholar 

  34. Cho K-J, Koh J-S, Kim S, Chu W-S, Hong Y, Ahn S-H. Review of manufacturing processes for soft biomimetic robots. Int J Precis Eng Manuf. 2009;10(3):171–81. https://doi.org/10.1007/s12541-009-0064-6.

    Article  Google Scholar 

  35. Lipson H. Challenges and opportunities for design, simulation, and fabrication of soft robots. Soft Robot. 2014;1(1):21–7. https://doi.org/10.1089/soro.2013.0007.

    Article  Google Scholar 

  36. Wang H, Totaro M, Beccai L. Toward perceptive soft robots: progress and challenges. Adv Sci. 2018;5(9):1800541. https://doi.org/10.1002/advs.201800541.

    Article  Google Scholar 

  37. Trimmer BA. New challenges in biorobotics: incorporating soft tissue into control systems. Appl Bionics Biomech. 2008;5(3):119–26. https://doi.org/10.1080/11762320802617255.

    Article  Google Scholar 

  38. Duriez C. Control of elastic soft robots based on real-time finite element method. In: 2013 IEEE international conference on robotics and automation, Karlsruhe, Germany, 2013. p. 3982–7. https://doi.org/10.1109/icra.2013.6631138.

  39. Moseley P, Florez JM, Sonar HA, Agarwal G, Curtin W, Paik J. Modeling, design, and development of soft pneumatic actuators with finite element method: modeling, design, and development of SPAs with FEM …. Adv Eng Mater. 2016;18(6):978–88. https://doi.org/10.1002/adem.201500503.

    Article  Google Scholar 

  40. Trivedi D, Lotfi A, Rahn CD. Geometrically exact models for soft robotic manipulators. IEEE Trans Robot. 2008;24(4):773–80. https://doi.org/10.1109/TRO.2008.924923.

    Article  Google Scholar 

  41. Largilliere F, Verona V, Coevoet E, Sanz-Lopez M, Dequidt J, Duriez C. Real-time control of soft-robots using asynchronous finite element modeling. In: 2015 IEEE international conference on robotics and automation (ICRA), Seattle, WA, USA, 2015. p. 2550–5. https://doi.org/10.1109/icra.2015.7139541.

  42. Elsayed Y, et al. Finite element analysis and design optimization of a pneumatically actuating silicone module for robotic surgery applications. Soft Robot. 2014;1(4):255–62. https://doi.org/10.1089/soro.2014.0016.

    Article  Google Scholar 

  43. Connolly F, Walsh CJ, Bertoldi K. Automatic design of fiber-reinforced soft actuators for trajectory matching. Proc Natl Acad Sci. 2017;114(1):51–6. https://doi.org/10.1073/pnas.1615140114.

    Article  Google Scholar 

  44. Yang D, et al. Buckling of elastomeric beams enables actuation of soft machines. Adv Mater. 2015;27(41):6323–7. https://doi.org/10.1002/adma.201503188.

    Article  Google Scholar 

  45. Sun Y, Liang X, Yap HK, Cao J, Ang MH, Hua Yeow RC. Force measurement toward the instability theory of soft pneumatic actuators. IEEE Robot Autom Lett. 2017;2(2):985–92. https://doi.org/10.1109/lra.2017.2656943.

    Article  Google Scholar 

  46. Onal CD, Chen X, Whitesides GM, Rus D. Soft mobile robots with on-board chemical pressure generation. In: Christensen HI, Khatib O, editors. Robotics research: the 15th international symposium ISRR. Cham: Springer; 2017. p. 525–40.

    Chapter  Google Scholar 

  47. Sun W, Liu F, Ma Z, Li C, Zhou J. Soft mobile robots driven by foldable dielectric elastomer actuators. J Appl Phys. 2016;120(8):084901. https://doi.org/10.1063/1.4960718.

    Article  Google Scholar 

  48. Gossweiler GR, et al. Mechanochemically active soft robots. ACS Appl Mater Interfaces. 2015;7(40):22431–5. https://doi.org/10.1021/acsami.5b06440.

    Article  Google Scholar 

  49. Wang C, et al. Soft ultrathin electronics innervated adaptive fully soft robots. Adv Mater. 2018;30(13):1706695. https://doi.org/10.1002/adma.201706695.

    Article  Google Scholar 

  50. Shepherd RF, et al. Using explosions to power a soft robot. Angew Chem Int Ed. 2013;52(10):2892–6. https://doi.org/10.1002/anie.201209540.

    Article  Google Scholar 

  51. Zhang Z, Bieze TM, Dequidt J, Kruszewski A, Duriez C. Visual servoing control of soft robots based on finite element model. In: 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), 2017. p. 2895–901. https://doi.org/10.1109/iros.2017.8206121.

  52. Zhang Z, Dequidt J, Kruszewski A, Largilliere F, Duriez C. Kinematic modeling and observer based control of soft robot using real-time finite element method. In: 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS), 2016. p. 5509–14. https://doi.org/10.1109/iros.2016.7759810.

  53. Picinbono G, Delingette H, Ayache N. Nonlinear and anisotropic elastic soft tissue models for medical simulation. In: Proceedings 2001 ICRA. IEEE international conference on robotics and automation (Cat. No.01CH37164), 2001, vol 2. p. 1370–5. https://doi.org/10.1109/robot.2001.932801.

  54. Freutel M, Schmidt H, Dürselen L, Ignatius A, Galbusera F. Finite element modeling of soft tissues: material models, tissue interaction and challenges. Clin Biomech. 2014;29(4):363–72. https://doi.org/10.1016/j.clinbiomech.2014.01.006.

    Article  Google Scholar 

  55. Yekutieli Y, Sagiv-Zohar R, Hochner B, Flash T. Dynamic model of the octopus arm. II. Control of reaching movements. J Neurophysiol. 2005;94(2):1459–68. https://doi.org/10.1152/jn.00685.2004.

    Article  Google Scholar 

  56. Napadow VJ, Kamm RD, Gilbert RJ. A biomechanical model of sagittal tongue bending. J Biomech Eng. 2002;124(5):547–56. https://doi.org/10.1115/1.1503794.

    Article  Google Scholar 

  57. Webster RJ, Jones BA. Design and kinematic modeling of constant curvature continuum robots: a review. Int J Robot Res. 2010;29(13):1661–83. https://doi.org/10.1177/0278364910368147.

    Article  Google Scholar 

  58. Esteki A, Joseph M. Mansour. A dynamic model of the hand with application in functional neuromuscular stimulation. Annals biomed eng. 1997;25(3):440–51.

    Article  Google Scholar 

  59. Yang T-H, et al. Assessing finger joint biomechanics by applying equal force to flexor tendons in vitro using a novel simultaneous approach. PLoS ONE. 2016;11(8):e0160301. https://doi.org/10.1371/journal.pone.0160301.

    Article  Google Scholar 

  60. Santello M, et al. Hand synergies: integration of robotics and neuroscience for understanding the control of biological and artificial hands. Phys Life Rev. 2016;17:1–23. https://doi.org/10.1016/j.plrev.2016.02.001.

    Article  Google Scholar 

  61. Barbagli F, Frisoli K, Salisbury K, Bergamasco M. Simulating human fingers: a soft finger proxy model and algorithm. In: HAPTICS, 2004. p. 9–17.

  62. Ciocarlie M, Lackner C, Allen P. Soft finger model with adaptive contact geometry for grasping and manipulation tasks. In: Second joint eurohaptics conference and symposium on haptic interfaces for virtual environment and teleoperator systems (WHC’07), 2007. p. 219–24. https://doi.org/10.1109/whc.2007.103.

  63. Connolly F, Polygerinos P, Walsh CJ, Bertoldi K. Mechanical programming of soft actuators by varying fiber angle. Soft Robot. 2015;2(1):26–32. https://doi.org/10.1089/soro.2015.0001.

    Article  Google Scholar 

  64. Suzumori K, Endo S, Kanda T, Kato N, Suzuki H. A bending pneumatic rubber actuator realizing soft-bodied manta swimming robot. In: Proceedings 2007 IEEE international conference on robotics and automation, 2007. p. 4975–80. https://doi.org/10.1109/robot.2007.364246.

  65. Cheney N, MacCurdy R, Clune J, Lipson H. Unshackling evolution: evolving soft robots with multiple materials and a powerful generative encoding. ACM SIGEVOlution. 2014;7(1):11–23.

    Article  Google Scholar 

  66. Germann J, Maesani A, Stöckli M, Floreano D. Soft cell simulator: a tool to study soft multi-cellular robots. In: 2013 IEEE International conference on robotics and biomimetics (ROBIO), 2013. p. 1300–5.

  67. Robinson G, Davies JBC. Continuum robots—a state of the art. In: Proceedings 1999 IEEE international conference on robotics and automation (Cat. No.99CH36288C), Detroit, MI, USA, 1999, vol 4. p. 2849–54. https://doi.org/10.1109/robot.1999.774029.

  68. Arkin RC. Behavior-based robotics. Cambridge: MIT Press; 1998.

    Google Scholar 

  69. George Thuruthel T, Ansari Y, Falotico E, Laschi C. Control strategies for soft robotic manipulators: a survey. Soft Robot. 2018;5(2):149–63.

    Article  Google Scholar 

  70. Camarillo DB, Carlson CR, Salisbury JK. Configuration tracking for continuum manipulators with coupled tendon drive. IEEE Trans Robot. 2009;25(4):798–808.

    Article  Google Scholar 

  71. Hannan MW, Walker ID. Kinematics and the implementation of an elephant’s trunk manipulator and other continuum style robots. J Robot Syst. 2003;20(2):45–63.

    Article  MATH  Google Scholar 

  72. Yu N, Hollnagel C, Blickenstorfer A, Kollias SS, Riener R. Comparison of MRI-compatible mechatronic systems with hydrodynamic and pneumatic actuation. IEEEASME Trans Mechatron. 2008;13(3):268–77.

    Article  Google Scholar 

  73. Daerden F, Lefeber D. Pneumatic artificial muscles: actuators for robotics and automation. Eur J Mech Environ Eng. 2002;47:10–21.

    Google Scholar 

  74. Chirikjian GS, Burdick JW. A modal approach to hyper-redundant manipulator kinematics. IEEE Trans Robot Autom. 1994;10(3):343–54.

    Article  Google Scholar 

  75. Giorelli M, Renda F, Calisti M, Arienti A, Ferri G, Laschi C. A two dimensional inverse kinetics model of a cable driven manipulator inspired by the octopus arm. In: 2012 IEEE international conference on robotics and automation, 2012. p. 3819–24.

  76. Liegeois A. Automatic supervisory control of the configuration and behavior of multibody mechanisms. IEEE Trans Syst Man Cybern. 1977;7(12):868–71. https://doi.org/10.1109/TSMC.1977.4309644.

    Article  MATH  Google Scholar 

  77. Oudeyer P, Ly O, Rouanet P. Exploring robust, intuitive and emergent physical human-robot interaction with the humanoid robot Acroban. In: 2011 11th IEEE-RAS international conference on humanoid robots, 2011. p. 120–7. https://doi.org/10.1109/humanoids.2011.6100852.

  78. Armbrust C, Proetzsch M, Schäfer B-H, Berns K. A behaviour-based integration of fully autonomous, semi-autonomous, and tele-operated control modes for an off-road robot. 2nd IFAC Symp Telemat Appl. 2010;43(23):191–6. https://doi.org/10.3182/20101005-4-RO-2018.00058.

    Article  Google Scholar 

  79. Matarić MJ, Michaud F. Behavior-based systems. In: Siciliano B, Khatib O, editors. Springer handbook of robotics. Heidelberg: Berlin; 2008. p. 891–909.

    Chapter  Google Scholar 

  80. Coey JMD. Magnetism and magnetic materials. Cambridge: Cambridge University Press; 2010.

    Google Scholar 

  81. Glatter O, Kratky O. Small angle X-ray scattering. Cambridge: Academic Press; 1982.

    Google Scholar 

  82. Horkay F, Zrinyi M. Mechanochemical energy conversion of neutral polymer gels. Makromol Chem Macromol Symp. 1989;30(1):133–43. https://doi.org/10.1002/masy.19890300113.

    Article  Google Scholar 

  83. Tasoglu S, et al. Paramagnetic levitational assembly of hydrogels. Adv Mater. 2013;25(8):1137–43. https://doi.org/10.1002/adma.201200285.

    Article  Google Scholar 

  84. Tone T, Suzuki K. A ferrofluid-based robotic sheet for liquid manipulation by using vibration control. In: 2017 13th IEEE conference on automation science and engineering (CASE), 2017. p. 776–81.

  85. Leon-Rodriguez H, Le VH, Ko SY, Park J-O, Park S. Ferrofluid soft-robot bio-inspired by Amoeba locomotion. In: 2015 15th international conference on control, automation and systems (ICCAS), 2015, p. 1833–8.

  86. Laschi C, Cianchetti M. Soft robotics: new perspectives for robot bodyware and control. Front Bioeng Biotechnol. 2014;2:3.

    Article  Google Scholar 

  87. Laschi C, et al. A bio-inspired predictive sensory-motor coordination scheme for robot reaching and preshaping. Auton Robots. 2008;25(1–2):85–101.

    Article  Google Scholar 

  88. Asuni G, Teti G, Laschi C, Guglielmelli E, Dario P. Extension to end-effector position and orientation control of a learning-based neurocontroller for a humanoid arm. In: 2006 IEEE/RSJ international conference on intelligent robots and systems, 2006. p. 4151–6.

  89. Giorelli M, Renda F, Calisti M, Arienti A, Ferri G, Laschi C. Neural network and jacobian method for solving the inverse statics of a cable-driven soft arm with nonconstant curvature. IEEE Trans Robot. 2015;31(4):823–34.

    Article  Google Scholar 

  90. Giorelli M, Renda F, Ferri G, Laschi C. A feed-forward neural network learning the inverse kinetics of a soft cable-driven manipulator moving in three-dimensional space. In: 2013 IEEE/RSJ international conference on intelligent robots and systems, 2013. p. 5033–9.

  91. Trivedi D, Rahn CD, Kier WM, Walker ID. Soft robotics: biological inspiration, state of the art, and future research. Appl Bionics Biomech. 2008;5(3):99–117. https://doi.org/10.1080/11762320802557865.

    Article  Google Scholar 

  92. Lu X, Xu W, Li X. A soft robotic tongue—mechatronic design and surface reconstruction. IEEEASME Trans Mechatron. 2017;22(5):2102–10. https://doi.org/10.1109/TMECH.2017.2748606.

    Article  Google Scholar 

  93. Marchese AD, Onal CD, Rus D. Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators. Soft Robot. 2014;1(1):75–87. https://doi.org/10.1089/soro.2013.0009.

    Article  Google Scholar 

  94. Pausley ME, Furst SJ, Talla V, Seelecke S. Electro-mechanical behavior of a shape memory alloy actuator. In: Behavior and mechanics of multifunctional materials and composites 2009, 2009, vol 7289. p. 72890T.

  95. Enkovaara J, et al. Magnetically driven shape memory alloys. Mater Sci Eng A. 2004;378(1):52–60. https://doi.org/10.1016/j.msea.2003.10.330.

    Article  Google Scholar 

  96. Jaffe B, Cook WR, Jaffe H. Piezoelectric ceramics. Saint Louis: Elsevier; 2012.

    Google Scholar 

  97. Shankar R, Ghosh TK, Spontak RJ. Dielectric elastomers as next-generation polymeric actuators. Soft Matter. 2007;3(9):1116–29. https://doi.org/10.1039/B705737G.

    Article  Google Scholar 

  98. Kularatne RS, Kim H, Boothby JM, Ware TH. Liquid crystal elastomer actuators: synthesis, alignment, and applications. J Polym Sci Part B Polym Phys. 2017;55(5):395–411. https://doi.org/10.1002/polb.24287.

    Article  Google Scholar 

  99. Kadooka K, Taya M. Review on viscoelastic behavior of dielectric polymers and their actuators. In: Yoseph B-C, editor. Electroactive polymer actuators and devices (EAPAD) XX. SPIE Digital Library. 2018, vol 10594. p. 105940 M. https://doi.org/10.1117/12.2295116.

  100. Choi ST, Kwon JO, Bauer F. Multilayered relaxor ferroelectric polymer actuators for low-voltage operation fabricated with an adhesion-mediated film transfer technique. Sens Actuators Phys. 2013;203:282–90. https://doi.org/10.1016/j.sna.2013.08.049.

    Article  Google Scholar 

  101. Zhao X, Suo Z. Electrostriction in elastic dielectrics undergoing large deformation. J Appl Phys. 2008;104(12):123530. https://doi.org/10.1063/1.3031483.

    Article  Google Scholar 

  102. Lima MD, et al. Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscles. Science. 2012;338(6109):928–32. https://doi.org/10.1126/science.1226762.

    Article  Google Scholar 

  103. Madden JD, Madden PG, Hunter IW. Conducting polymer actuators as engineering materials. In: Yoseph B-C, editor. Smart structures and materials 2002: electroactive polymer actuators and devices (EAPAD). SPIE Digital Library. 2002, vol 4695. p. 176–90. https://doi.org/10.1117/12.475163.

  104. Shahinpoor M. Ionic polymer–conductor composites as biomimetic sensors, robotic actuators and artificial muscles—a review. Electrochim Acta. 2003;48(14):2343–53. https://doi.org/10.1016/S0013-4686(03)00224-X.

    Article  Google Scholar 

  105. Jo C, Pugal D, Oh I-K, Kim KJ, Asaka K. Recent advances in ionic polymer–metal composite actuators and their modeling and applications. Prog Polym Sci. 2013;38(7):1037–66. https://doi.org/10.1016/j.progpolymsci.2013.04.003.

    Article  Google Scholar 

  106. Akhavan J. Electro-rheological polymers. J Aerosp Eng. 2007;221(4):577–87.

    Google Scholar 

  107. Calisti M, et al. An octopus-bioinspired solution to movement and manipulation for soft robots. Bioinspir Biomim. 2011;6(3):036002. https://doi.org/10.1088/1748-3182/6/3/036002.

    Article  Google Scholar 

  108. Cheng NG, et al. Design and analysis of a robust, low-cost, highly articulated manipulator enabled by jamming of granular media. In: 2012 IEEE international conference on robotics and automation, 2012. p. 4328–33.

  109. Takashi M, Toshiyuki H. Miniature five-fingered robot hand driven by shape memory alloy actuators. In: Proceedings of the IASTED international conference on robotics and applications, 2006. p. 174–9.

  110. Yoneyama T, Miyazaki S, editors. Shape memory alloys for biomedical applications. Cambridge: Woodhead Publishing; 2009. p. 327–37.

    Book  Google Scholar 

  111. Park H-B, Kim D-R, Kim H-J, Wang W, Han M-W, Ahn S-H. Design and analysis of artificial muscle robotic elbow joint using shape memory alloy actuator. Int J Precis Eng Manuf. 2019. https://doi.org/10.1007/s12541-019-00240-8.

    Article  Google Scholar 

  112. Otsuka K, Kakeshita T. Science and technology of shape-memory alloys: new developments. MRS Bull. 2002;27(2):91–100. https://doi.org/10.1557/mrs2002.43.

    Article  Google Scholar 

  113. Huang W. On the selection of shape memory alloys for actuators. Mater Des. 2002;23(1):11–9. https://doi.org/10.1016/S0261-3069(01)00039-5.

    Article  Google Scholar 

  114. Duerig TW, Melton KN, Stöckel D, Wayman CM, editors. Engineering aspects of shape memory alloys. Oxford: Butterworth-Heinemann; 1990.

    Google Scholar 

  115. Cverna F, ASM International, editors. ASM ready reference. Thermal properties of metals. Materials Park: ASM International; 2002.

    Google Scholar 

  116. Mohd Jani J, Leary M, Subic A, Gibson MA. A review of shape memory alloy research, applications and opportunities. Mater Des 1980–2015. 2014;56:1078–113. https://doi.org/10.1016/j.matdes.2013.11.084.

    Article  Google Scholar 

  117. Reginald DesRoches, Jason McCormick, Michael Delemont. Cyclic properties of superelastic shape memory alloy wires and bars. J Struct Eng. 2004;130(1):38–46. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:1(38).

    Article  Google Scholar 

  118. Rodrigue H, Wang W, Kim D-R, Ahn S-H. Curved shape memory alloy-based soft actuators and application to soft gripper. Compos Struct. 2017;176:398–406. https://doi.org/10.1016/j.compstruct.2017.05.056.

    Article  Google Scholar 

  119. Lin H-T, Leisk GG, Trimmer B. GoQBot: a caterpillar-inspired soft-bodied rolling robot. Bioinspir Biomim. 2011;6(2):026007. https://doi.org/10.1088/1748-3182/6/2/026007.

    Article  Google Scholar 

  120. Gauthier J-Y, Hubert A, Abadie J, Lexcellent N, Chaillet. Multistable actuator based on magnetic shape memory alloy. In: Proceedings of the 10th international conference on new actuators, remen, Germany, 2006, p. 787–90.

  121. Lagoudas DC, editor. Shape memory alloys: modeling and engineering applications. New York: Springer; 2008.

    MATH  Google Scholar 

  122. Minase J, Lu T-F, Cazzolato B, Grainger S. A review, supported by experimental results, of voltage, charge and capacitor insertion method for driving piezoelectric actuators. Precis Eng. 2010;34(4):692–700. https://doi.org/10.1016/j.precisioneng.2010.03.006.

    Article  Google Scholar 

  123. Kim B, Park S, Jee CY, Yoon S-J. An earthworm-like locomotive mechanism for capsule endoscopes. In: 2005 IEEE/RSJ international conference on intelligent robots and systems, 2005, p. 2997–3002. https://doi.org/10.1109/iros.2005.1545608.

  124. Ming A, Hashimoto K, Zhao W, Shimojo M. Fundamental analysis for design and control of soft fish robots using piezoelectric fiber composite. In: 2013 IEEE international conference on mechatronics and automation, 2013, p. 219–24. https://doi.org/10.1109/icma.2013.6617921.

  125. Kellaris N, Gopaluni Venkata V, Smith GM, Mitchell SK, Keplinger C. Peano-HASEL actuators: muscle-mimetic, electrohydraulic transducers that linearly contract on activation. Sci Robot. 2018;3(14):eaar3276. https://doi.org/10.1126/scirobotics.aar3276.

    Article  Google Scholar 

  126. Davidson JR, Krebs HI. An electrorheological fluid actuator for rehabilitation robotics. IEEEASME Trans Mechatron. 2018;23(5):2156–67. https://doi.org/10.1109/TMECH.2018.2869126.

    Article  Google Scholar 

  127. Sohn J, Kim G-W, Choi S-B. A state-of-the-art review on robots and medical devices using smart fluids and shape memory alloys. Appl Sci. 2018;8(10):1928. https://doi.org/10.3390/app8101928.

    Article  Google Scholar 

  128. Hamlen RP, Kent CE, Shafer SN. Electrolytically activated contractile polymer. Nature. 1965;206(4989):1149–50. https://doi.org/10.1038/2061149b0.

    Article  Google Scholar 

  129. Acome E, et al. Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science. 2018;359(6371):61–5. https://doi.org/10.1126/science.aao6139.

    Article  Google Scholar 

  130. Oguro K. Bending of an ion-conducting polymer film-electrode composite by an electric stimulus at low voltage. J Micromach Soc. 1992;5:27–30.

    Google Scholar 

  131. Asaka K, Oguro K, Nishimura Y, Mizuhata M, Takenaka H. Bending of polyelectrolyte membrane-platinum composites by electric stimuli I. Response characteristics to various waveforms. Polym J. 1995;27(4):436–40. https://doi.org/10.1295/polymj.27.436.

    Article  Google Scholar 

  132. Mukai K, et al. Highly conductive sheets from millimeter-long single-walled carbon nanotubes and ionic liquids: application to fast-moving, low-voltage electromechanical actuators operable in air. Adv Mater. 2009;21(16):1582–5. https://doi.org/10.1002/adma.200802817.

    Article  Google Scholar 

  133. Cameron B, Hall MD. Recent concepts in the treatment of the limb-deficient child. Artif Limbs Rev Curr Dev. 1966;2(1):36–51.

    Google Scholar 

  134. Marquardt E. The Heidelberg pneumatic arm prosthesis. J Bone Jt Surg. 1965;47(3):425–34.

    Article  Google Scholar 

  135. Miriyev A, Stack K, Lipson H. Soft material for soft actuators. Nat Commun. 2017;8(1):596. https://doi.org/10.1038/s41467-017-00685-3.

    Article  Google Scholar 

  136. Mosadegh B, et al. Pneumatic networks for soft robotics that actuate rapidly. Adv Funct Mater. 2014;24(15):2163–70. https://doi.org/10.1002/adfm.201303288.

    Article  Google Scholar 

  137. Polygerinos P, Wang Z, Galloway KC, Wood RJ, Walsh CJ. Soft robotic glove for combined assistance and at-home rehabilitation. Wearable Robot. 2015;73:135–43. https://doi.org/10.1016/j.robot.2014.08.014.

    Article  Google Scholar 

  138. Wang W, Ahn S-H. Shape memory alloy-based soft gripper with variable stiffness for compliant and effective grasping. Soft Robot. 2017;4(4):379–89. https://doi.org/10.1089/soro.2016.0081.

    Article  Google Scholar 

  139. Merz R, Prinz FB, Ramaswami K, Terk M, Weiss LE. Shape deposition manufacturing. International Solid Freeform Fabrication Symposium. 1994. https://doi.org/10.15781/t2bk1781c.

  140. Rodrigue H, Wei W, Bhandari B, Ahn S-H. Fabrication of wrist-like SMA-based actuator by double smart soft composite casting. Smart Mater Struct. 2015;24(12):125003. https://doi.org/10.1088/0964-1726/24/12/125003.

    Article  Google Scholar 

  141. Kumar A. Methods and materials for smart manufacturing: additive manufacturing, internet of things, flexible sensors and soft robotics. Manuf Lett. 2018;15:122–5. https://doi.org/10.1016/j.mfglet.2017.12.014.

    Article  Google Scholar 

  142. Loh CS, Yokoi H, Arai T. New shape memory alloy actuator: design and application in the prosthetic hand. In: 2005 IEEE engineering in medicine and biology 27th annual conference, Shanghai, China, 2005. p. 6900–3, https://doi.org/10.1109/iembs.2005.1616092.

  143. Peele BN, Wallin TJ, Zhao H, Shepherd RF. 3D printing antagonistic systems of artificial muscle using projection stereolithography. Bioinspir Biomim. 2015;10(5):055003. https://doi.org/10.1088/1748-3190/10/5/055003.

    Article  Google Scholar 

  144. Gao W, et al. The status, challenges, and future of additive manufacturing in engineering. Comput Aided Des. 2015;69:65–89. https://doi.org/10.1016/j.cad.2015.04.001.

    Article  Google Scholar 

  145. Morin SA, et al. Using ‘Click-e-Bricks’ to make 3D elastomeric structures. Adv Mater. 2014;26(34):5991–9. https://doi.org/10.1002/adma.201401642.

    Article  Google Scholar 

  146. Carpi F, Smela E, editors. Biomedical applications of electroactive polymer actuators. Chichester: Wiley; 2009.

    Google Scholar 

  147. Kim KJ, Tadokoro S, editors. Electroactive polymers for robotic applications: artificial muscles and sensors. London: Springer; 2007.

    Google Scholar 

  148. Shahinpoor M, Kim KJ, Mojarrad M. Artificial muscles: applications of advanced polymeric nanocomposites. New York: Taylor & Francis; 2007.

    Book  Google Scholar 

  149. Higuchi T, Suzumori K, Tadokoro S, editors. Next-generation actuators leading breakthroughs. New York: Springer; 2010.

    Google Scholar 

  150. Sahrmann SA. Diagnosis by the physical therapist—a prerequisite for treatment. Phys Ther. 1988;68(11):1703–6. https://doi.org/10.1093/ptj/68.11.1703.

    Article  Google Scholar 

  151. Anderson IA, Gisby TA, McKay TG, O’Brien BM, Calius EP. Multi-functional dielectric elastomer artificial muscles for soft and smart machines. J Appl Phys. 2012;112(4):041101. https://doi.org/10.1063/1.4740023.

    Article  Google Scholar 

  152. Tanaka T, Nishio I, Sun S-T, Ueno-Nishio S. Collapse of gels in an electric field. Science. 1982;218(4571):467–9. https://doi.org/10.1126/science.218.4571.467.

    Article  Google Scholar 

  153. Ogawa N, Hashimoto M, Takasaki M, Hirai T. Characteristics evaluation of PVC gel actuators. In: 2009 IEEE/RSJ international conference on intelligent robots and systems, St. Louis, MO, USA, 2009. p. 2898–2903. https://doi.org/10.1109/iros.2009.5354417.

  154. Wales K, Frederick S. Surgical instrument having fluid actuated opposing jaws. US 7,559,452, 2009.

  155. Nilsson M, Ingvast J, Wikander J, von Holst H. The soft extra muscle system for improving the grasping capability in neurological rehabilitation. In: 2012 IEEE-EMBS conference on biomedical engineering and sciences, 2012. p. 412–7. https://doi.org/10.1109/iecbes.2012.6498090.

  156. Jayatilake D, Suzuki K. A soft actuator based expressive mask for facial paralyzed patients. In: 2008 IEEE/RSJ international conference on intelligent robots and systems, 2008. p. 4048–53. https://doi.org/10.1109/iros.2008.4651177.

  157. Shahinpoor M, Soltanpour D. Surgical correction of ptosis by polymeric artificial muscles. 7,625,404, 2005.

  158. Tanaka Y, Sato K, Shimizu T, Yamato M, Okano T, Kitamori T. A micro-spherical heart pump powered by cultured cardiomyocytes. Lab Chip. 2007;7(2):207–12. https://doi.org/10.1039/B612082B.

    Article  Google Scholar 

  159. Roche ET, et al. Soft robotic sleeve supports heart function. Sci Transl Med. 2017;9(373):eaaf392. https://doi.org/10.1126/scitranslmed.aaf3925.

    Article  Google Scholar 

  160. Fang B-K, Ju M-S, Lin C-CK. A new approach to develop ionic polymer–metal composites (IPMC) actuator: fabrication and control for active catheter systems. Sens Actuators Phys. 2007;137(2):321–9. https://doi.org/10.1016/j.sna.2007.03.024.

    Article  Google Scholar 

  161. Fang BK, Ju MS, Lin CCK. Development of active guide-wire for cardiac catheterization by using ionic polymer-metal composites. In: 13th International conference on biomedical engineering, 2009. p. 340–3.

  162. Weber J, Robaina S. (2010). U.S. Patent No. 7,767,219. Washington, DC: U.S. Patent and Trademark Office.

  163. Eidenschink T, et al. Medical balloon incorporating electroactive polymer and methods of making and using the same. US7919910B2, 2008.

  164. Weber J, Eidenschink T, Elizondo D, Simer L. Electrically actuated medical devices. 8,398,693, 2013.

  165. Boston Scientific SciMed Inc. Electroactive polymer actuated medical devices. U. S. Pat. Trademark Off., vol. US Patent 6,969,395 B2, 2008.

  166. Shahinpoor M, Soltanpour D. Implantable micro-pump assembly. U. S. Pat. Trademark Off., vol. US Patent 6,589,198 Bl. 2003.

  167. Hood LE, et al. (2012). U.S. Patent No. 8,273,075. Washington, DC: U.S. Patent and Trademark Office.

  168. Pfeifer R, Lungarella M, Iida F. The challenges ahead for bio-inspired ‘soft’ robotics. Commun ACM. 2012;55(11):76. https://doi.org/10.1145/2366316.2366335.

    Article  Google Scholar 

  169. Mirfakhrai T, Madden JDW, Baughman RH. Polymer artificial muscles. Mater Today. 2007;10(4):30–8. https://doi.org/10.1016/S1369-7021(07)70048-2.

    Article  Google Scholar 

  170. Pelrine R, et al. Dielectric elastomer artificial muscle actuators: toward biomimetic motion. in: Presented at the SPIE’s 9th annual international symposium on smart structures and materials, San Diego, CA, 2002. p. 126–37. https://doi.org/10.1117/12.475157.

  171. Muth JT, et al. Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv Mater. 2014;26(36):6307–12. https://doi.org/10.1002/adma.201400334.

    Article  Google Scholar 

  172. Wehner M, et al. Pneumatic energy sources for autonomous and wearable soft robotics. Soft Robot. 2014;1(4):263–74. https://doi.org/10.1089/soro.2014.0018.

    Article  Google Scholar 

  173. Lu N, Kim D-H. Flexible and stretchable electronics paving the way for soft robotics. Soft Robot. 2014;1(1):53–62. https://doi.org/10.1089/soro.2013.0005.

    Article  Google Scholar 

  174. Tajima R, Kagami S, Inaba M, Inoue H. Development of soft and distributed tactile sensors and the application to a humanoid robot. Adv Robot. 2002;16(4):381–97. https://doi.org/10.1163/15685530260174548.

    Article  Google Scholar 

  175. Song W-K. Trends in rehabilitation robots and their translational research in National Rehabilitation Center, Korea. Biomed Eng Lett. 2016;6(1):1–9. https://doi.org/10.1007/s13534-016-0211-9.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the contribution of Mary Moran, Ian Wahlquist, Michael Anderson, and Trevor Pinkston as undergraduate research students in the preparation of this manuscript.

Funding

This study was funded by Arkansas INBRE program, supported by a grant from the National Institute of General Medical Sciences, P20 GM103429 from the National Institutes of Health (NIH). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Ashuri.

Ethics declarations

Conflict of interest

All the authors declare no conflict of interest.

Human subjects

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashuri, T., Armani, A., Jalilzadeh Hamidi, R. et al. Biomedical soft robots: current status and perspective. Biomed. Eng. Lett. 10, 369–385 (2020). https://doi.org/10.1007/s13534-020-00157-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-020-00157-6

Keywords

Navigation