Skip to main content

Advertisement

Log in

The quest for precision in transanal total mesorectal excision

  • Challenges in Coloproctology
  • Published:
Techniques in Coloproctology Aims and scope Submit manuscript

Abstract

Transanal total mesorectal excision (TME) is an emerging minimally invasive approach to rectal cancer, with encouraging preliminary results. However, the new surgical anatomy of the bottom-up approach complicates surgical understanding and increases the risks of inadvertent injuries to crucial anatomical structures, including nerves. Key elements to improve the safety and stimulate interest in such a complex technique might be robotics and image guidance, to enhance the level of precision. In this editorial, some of the technologies that could be used for precision TME are outlined, in light of the experience of our Institute for Image-Guided Surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Marescaux J, Diana M (2015) Inventing the future of surgery. World J Surg 39:615–622

    Article  PubMed  Google Scholar 

  2. Ashley EA (2015) The precision medicine initiative: a new national effort. JAMA 313:2119–2120

    Article  PubMed  CAS  Google Scholar 

  3. Heald RJ, Husband EM, Ryall RD (1982) The mesorectum in rectal cancer surgery: the clue to pelvic recurrence? Br J Surg 69:613–616

    Article  PubMed  CAS  Google Scholar 

  4. Vennix S, Pelzers L, Bouvy N et al (2014) Laparoscopic versus open total mesorectal excision for rectal cancer. Cochrane Database Syst Rev 4:CD005200

    PubMed  Google Scholar 

  5. Moriya Y, Sugihara K, Akasu T, Fujita S (1995) Nerve-sparing surgery with lateral node dissection for advanced lower rectal cancer. Eur J Cancer 31A:1229–1232

    Article  PubMed  CAS  Google Scholar 

  6. Moriya Y (2006) Function preservation in rectal cancer surgery. Int J Clin Oncol 11:339–343

    Article  PubMed  Google Scholar 

  7. Kim NK, Kim YW, Cho MS (2015) Total mesorectal excision for rectal cancer with emphasis on pelvic autonomic nerve preservation: expert technical tips for robotic surgery. Surg Oncol 24:172–180

    Article  PubMed  CAS  Google Scholar 

  8. Wallner C, Lange MM, Bonsing BA et al (2008) Causes of fecal and urinary incontinence after total mesorectal excision for rectal cancer based on cadaveric surgery: a study from the Cooperative Clinical Investigators of the Dutch total mesorectal excision trial. J Clin Oncol 26:4466–4472

    Article  PubMed  Google Scholar 

  9. Leroy J, Jamali F, Forbes L et al (2014) Laparoscopic total mesorectal excision (TME) for rectal cancer surgery: long-term outcomes. Surg Endosc 18:281–289

    Google Scholar 

  10. Diana M, Marescaux J (2015) Robotic surgery. Br J Surg 102:e15–e28

    Article  PubMed  CAS  Google Scholar 

  11. Marescaux J, Diana M (2015) Next step in minimally invasive surgery: hybrid image-guided surgery. J Pediatr Surg 50:30–36

    Article  PubMed  Google Scholar 

  12. Marescaux J, Dallemagne B, Perretta S, Wattiez A, Mutter D, Coumaros D (2007) Surgery without scars: report of transluminal cholecystectomy in a human being. Arch Surg 142:823–826 (discussion 6–7)

    Article  PubMed  Google Scholar 

  13. Sylla P, Sohn DK, Cizginer S et al (2010) Survival study of natural orifice translumenal endoscopic surgery for rectosigmoid resection using transanal endoscopic microsurgery with or without transgastric endoscopic assistance in a swine model. Surg Endosc 24:2022–2030

    Article  PubMed  Google Scholar 

  14. Sylla P, Willingham FF, Sohn DK, Gee D, Brugge WR, Rattner DW (2008) NOTES rectosigmoid resection using transanal endoscopic microsurgery (TEM) with transgastric endoscopic assistance: a pilot study in swine. J Gastrointest Surg 12:1717–1723

    Article  PubMed  Google Scholar 

  15. Trunzo JA, Delaney CP (2010) Natural orifice proctectomy using a transanal endoscopic microsurgical technique in a porcine model. Surg Innov 17:48–52

    Article  PubMed  Google Scholar 

  16. Whiteford MH, Denk PM, Swanstrom LL (2007) Feasibility of radical sigmoid colectomy performed as natural orifice translumenal endoscopic surgery (NOTES) using transanal endoscopic microsurgery. Surg Endosc 21:1870–1874

    Article  PubMed  CAS  Google Scholar 

  17. Wilhelm D, Meining A, von Delius S et al (2007) An innovative, safe and sterile sigmoid access (ISSA) for NOTES. Endoscopy 39:401–406

    Article  PubMed  CAS  Google Scholar 

  18. Costantino FA, Diana M, Wall J, Leroy J, Mutter D, Marescaux J (2012) Prospective evaluation of peritoneal fluid contamination following transabdominal versus transanal specimen extraction in laparoscopic left-sided colorectal resections. Surg Endosc 26:1495–1500

    Article  PubMed  Google Scholar 

  19. Funahashi K, Koike J, Teramoto T et al (2009) Transanal rectal dissection: a procedure to assist achievement of laparoscopic total mesorectal excision for bulky tumor in the narrow pelvis. Am J Surg 197:e46–e50

    Article  PubMed  Google Scholar 

  20. Bertrand MM, Colombo PE, Alsaid B, Prudhomme M, Rouanet P (2014) Transanal endoscopic proctectomy and nerve injury risk: bottom to top surgical anatomy, key points. Dis Colon Rectum 57:1145–1148

    Article  PubMed  CAS  Google Scholar 

  21. Sylla P, Rattner DW, Delgado S, Lacy AM (2010) NOTES transanal rectal cancer resection using transanal endoscopic microsurgery and laparoscopic assistance. Surg Endosc 24:1205–1210

    Article  PubMed  Google Scholar 

  22. de Lacy AM, Rattner DW, Adelsdorfer C et al (2013) Transanal natural orifice transluminal endoscopic surgery (NOTES) rectal resection:”down-to-up” total mesorectal excision (TME)-short-term outcomes in the first 20 cases. Surg Endosc 27:3165–3172

    Article  PubMed  Google Scholar 

  23. Atallah S, Albert M, DeBeche-Adams T, Nassif G, Polavarapu H, Larach S (2013) Transanal minimally invasive surgery for total mesorectal excision (TAMIS-TME): a stepwise description of the surgical technique with video demonstration. Tech Coloproctol 17:321–325

    Article  PubMed  CAS  Google Scholar 

  24. Atallah S, Martin-Perez B, Albert M et al (2014) Transanal minimally invasive surgery for total mesorectal excision (TAMIS-TME): results and experience with the first 20 patients undergoing curative-intent rectal cancer surgery at a single institution. Tech Coloproctol 18:473–480

    Article  PubMed  CAS  Google Scholar 

  25. Zorron R, Phillips HN, Coelho D, Flach L, Lemos FB, Vassallo RC (2011) Perirectal NOTES access: “down-to-up” total mesorectal excision for rectal cancer. Surg Innov 19:11–19

    Article  PubMed  Google Scholar 

  26. Leroy J, Diana M, Barry B et al (2012) Perirectal oncologic gateway to retroperitoneal endoscopic single-site surgery (PROGRESSS): a feasibility study for a new NOTES approach in a swine model. Surg Innov 19:345–352

    Article  PubMed  Google Scholar 

  27. Leroy J, Barry BD, Melani A, Mutter D, Marescaux J (2013) No-scar transanal total mesorectal excision: the last step to pure NOTES for colorectal surgery. JAMA Surg 148:226–230 (discussion 31)

    Article  PubMed  Google Scholar 

  28. Araujo SE, Crawshaw B, Mendes CR, Delaney CP (2015) Transanal total mesorectal excision: a systematic review of the experimental and clinical evidence. Tech Coloproctol 19:69–82

    Article  PubMed  CAS  Google Scholar 

  29. Tuech JJ, Karoui M, Lelong B et al (2015) A step toward NOTES total mesorectal excision for rectal cancer: endoscopic transanal proctectomy. Am Surg 261:228–233

    Google Scholar 

  30. Atallah S, Nassif G, Larach S (2015) Stereotactic navigation for TAMIS-TME: opening the gateway to frameless, image-guided abdominal and pelvic surgery. Surg Endosc 29:207–211

    Article  PubMed  Google Scholar 

  31. Atallah S, Martin-Perez B, Larach S (2015) Image-guided real-time navigation for transanal total mesorectal excision: a pilot study. Tech Coloproctol. doi:10.1007/s10151-015-1329-y

    Google Scholar 

  32. Iseki H, Masutani Y, Iwahara M et al (1997) Volumegraph (overlaid three-dimensional image-guided navigation). Clinical application of augmented reality in neurosurgery. Stereotact Funct Neurosurg 68:18–24

    Article  PubMed  CAS  Google Scholar 

  33. Wagner A, Ploder O, Enislidis G, Truppe M, Ewers R (1995) Virtual image guided navigation in tumor surgery—technical innovation. J Craniomaxillofac Surg 23:217–223

    Article  PubMed  CAS  Google Scholar 

  34. D’Agostino J, Diana M, Soler L, Vix M, Marescaux J (2012) 3D virtual neck exploration prior to parathyroidectomy. N Engl J Med 367:1072–1073

    Article  PubMed  Google Scholar 

  35. Soler L, Delingette H, Malandain G et al (2000) An automatic virtual patient reconstruction from CT-scans for hepatic surgical planning. Stud Health Technol Inform 70:316–322

    PubMed  CAS  Google Scholar 

  36. Marescaux J, Rubino F, Arenas M, Mutter D, Soler L (2004) Augmented-reality-assisted laparoscopic adrenalectomy. JAMA 292:2214–2215

    PubMed  CAS  Google Scholar 

  37. Pessaux P, Diana M, Soler L, Piardi T, Mutter D, Marescaux J (2015) Towards cybernetic surgery: robotic and augmented reality-assisted liver segmentectomy. Langenbecks Arch Surg 400:381–385

    Article  PubMed  Google Scholar 

  38. D’Agostino J, Diana M, Vix M et al (2013) Three-dimensional metabolic and radiologic gathered evaluation using VR-RENDER fusion: a novel tool to enhance accuracy in the localization of parathyroid adenomas. World J Surg 37:1618–1625

    Article  PubMed  Google Scholar 

  39. D’Agostino J, Wall J, Soler L, Vix M, Duh QY, Marescaux J (2013) Virtual neck exploration for parathyroid adenomas: a first step toward minimally invasive image-guided surgery. JAMA Surg 148:232–238 (discussion 8)

    Article  PubMed  Google Scholar 

  40. Marzano E, Piardi T, Soler L et al (2013) Augmented reality-guided artery-first pancreatico-duodenectomy. J Gastrointest Surg 17:1980–1983

    Article  PubMed  Google Scholar 

  41. Diana M, Pessaux P, Marescaux J (2014) New technologies for single-site robotic surgery in hepato-biliary-pancreatic surgery. J Hepato-Biliary Pancreat Sci 21:34–42

    Article  Google Scholar 

  42. Pessaux P, Diana M, Soler L, Piardi T, Mutter D, Marescaux J (2014) Robotic duodenopancreatectomy assisted with augmented reality and real-time fluorescence guidance. Surg Endosc 28:2493–2498

    Article  PubMed  Google Scholar 

  43. Hostettler A, Nicolau SA, Remond Y, Marescaux J, Soler L (2010) A real-time predictive simulation of abdominal viscera positions during quiet free breathing. Prog Biophys Mol Biol 103:169–184

    Article  PubMed  CAS  Google Scholar 

  44. Bertrand MM, Macri F, Mazars R, Droupy S, Beregi JP, Prudhomme M (2014) MRI-based 3D pelvic autonomous innervation: a first step towards image-guided pelvic surgery. Eur Radiol 24:1989–1997

    Article  PubMed  CAS  Google Scholar 

  45. Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452:580–589

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Nachiappan S, Askari A, Currie A, Kennedy RH, Faiz O (2014) Intraoperative assessment of colorectal anastomotic integrity: a systematic review. Surg Endosc 28:2513–2530

    Article  PubMed  Google Scholar 

  47. Karliczek A, Benaron DA, Baas PC, Zeebregts CJ, Wiggers T, van Dam GM (2010) Intraoperative assessment of microperfusion with visible light spectroscopy for prediction of anastomotic leakage in colorectal anastomoses. Colorectal Dis 12:1018–1025

    Article  PubMed  CAS  Google Scholar 

  48. Karliczek A, Harlaar NJ, Zeebregts CJ, Wiggers T, Baas PC, van Dam GM (2009) Surgeons lack predictive accuracy for anastomotic leakage in gastrointestinal surgery. Int J Colorectal Dis 24:569–576

    Article  PubMed  CAS  Google Scholar 

  49. Jafari MD, Wexner SD, Martz JE et al (2015) Perfusion assessment in laparoscopic left-sided/anterior resection (PILLAR II): a multi-institutional study. J Am Coll Surg 220:82–92e1

    Article  PubMed  Google Scholar 

  50. Diana M, Agnus V, Halvax P et al (2015) Intraoperative fluorescence-based enhanced reality laparoscopic real-time imaging to assess bowel perfusion at the anastomotic site in an experimental model. Br J Surg 102:e169–e176

    Article  PubMed  CAS  Google Scholar 

  51. Diana M, Dallemagne B, Chung H et al (2014) Probe-based confocal laser endomicroscopy and fluorescence-based enhanced reality for real-time assessment of intestinal microcirculation in a porcine model of sigmoid ischemia. Surg Endosc 28:3224–3233

    Article  PubMed  Google Scholar 

  52. Diana M, Halvax P, Dallemagne B et al (2014) Real-time navigation by fluorescence-based enhanced reality for precise estimation of future anastomotic site in digestive surgery. Surg Endosc 28:3108–3118

    Article  PubMed  Google Scholar 

  53. Diana M, Noll E, Agnus V et al (2015) Reply to Letter: “Enhanced reality fluorescence videography to assess bowel perfusion: the cybernetic eye”. Am Surg PMID 26020109

  54. Diana M, Noll E, Diemunsch P et al (2014) Enhanced-reality video fluorescence: a real-time assessment of intestinal viability. Am Surg 259:700–707

    Google Scholar 

  55. Matsui A, Tanaka E, Choi HS et al (2010) Real-time, near-infrared, fluorescence-guided identification of the ureters using methylene blue. Surgery 148:78–86

    Article  PubMed  PubMed Central  Google Scholar 

  56. Dip FD, Nahmod M, Anzorena FS et al (2014) Novel technique for identification of ureters using sodium fluorescein. Surg Endosc 28:2730–2733

    Article  PubMed  Google Scholar 

  57. Korb ML, Huh WK, Boone JD et al (2015) Laparoscopic fluorescent visualization of the ureter with intravenous IRDye800CW. J Minim Invasive Gynecol 22:799–806

    Article  PubMed  Google Scholar 

  58. Cotero VE, Kimm SY, Siclovan TM et al (2015) Improved intraoperative visualization of nerves through a myelin-binding fluorophore and dual-mode laparoscopic imaging. PLoS One 10:e0130276

    Article  PubMed  PubMed Central  Google Scholar 

  59. Dhumane PW, Diana M, Leroy J, Marescaux J (2011) Minimally invasive single-site surgery for the digestive system: a technological review. J Minim Access Surg 7:40–51

    PubMed  PubMed Central  Google Scholar 

  60. Diana M, Chung H, Liu KH et al (2013) Endoluminal surgical triangulation: overcoming challenges of colonic endoscopic submucosal dissections using a novel flexible endoscopic surgical platform: feasibility study in a porcine model. Surg Endosc 27:4130–4135

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Christopher Burel and Guy Temporal, professionals in Medical English proofreading, for their valuable help in revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Marescaux.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franchini Melani, A.G., Diana, M. & Marescaux, J. The quest for precision in transanal total mesorectal excision. Tech Coloproctol 20, 11–18 (2016). https://doi.org/10.1007/s10151-015-1405-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10151-015-1405-3

Keywords

Navigation