Skip to main content

Pathophysiology of Coronary Calcification

  • Chapter
Coronary Radiology

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 159 Accesses

Abstract

In the eighteenth century, just after the initial descriptions of coronary sclerosis, pathologists first noted calcium deposits in the coronary arteries (Blankenhorn 1961; Morgagni 1761, cited by bing 1964). Thebesius considered calcified coronary artery lesions to be the most important feature of coronary sclerosis (Blankenhorn 1961). This was the prevailing view for over 200 years. In 1863 Virchow noticed that the calcification of atherosclerotic lesions in the coronaries was similar to ossification, or bone formation. During the twentieth century attention shifted towards cholesterol metabolism and other factors found to play an essential role in atherogenesis. Calcium deposits were regarded as merely a degenerative byproduct of advanced stages of atherosclerosis (Leary 1936; Blankenhorn 1961; Hamby et al. 1974). Part of the decreased interest may have been due to the poor resolution of radiographic imaging techniques at the time, with a low sensitivity for detecting calcium. Nevertheless, many researchers recognized that noninvasive imaging of coronary calcification might be useful for the identification of asymptomatic subjects at high risk of acute myocardial infarction or sudden cardiac death. Owing to the development of high-resolution techniques such as fluoroscopy and, more recently, electron-beam

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson HC (1983) Calcific diseases. A concept. Arch Pathol Lab Med 107: 341–348

    Google Scholar 

  • Anderson HC (1989) Mechanism of mineral formation in bone. Lab Invest 60: 320–330

    Google Scholar 

  • Bing R (1964) Coronary circulation and cardiac metabolism. In: Fishman A, Richards D (eds) Circulation of the blood: men and ideas. Oxford University Press, Oxford, UK, pp 199–264

    Google Scholar 

  • Blankenhorn DH (1961) Coronary arterial calcification: a review. Am J Med Sci 42: 1–9

    Article  Google Scholar 

  • Bostrom K, Watson KE, Horn S et al (1993) Bone morphogenetic protein expression in human atherosclerotic lesions. J Clin Invest 91: 1800–1809

    Article  Google Scholar 

  • Buerger L, Oppenheimer A (1908) Bone formation in sclerotic arteries. J Exp Med 10: 354–367

    Article  Google Scholar 

  • Bunting CH (1906) The formation of true bone in sclerotic arteries. J Exp Med 8: 365–376

    Article  Google Scholar 

  • Cheng GC, Loree HM, Kamm RD et al (1993) Distribution of circumferential stress in ruptured and stable atherosclerotic lesions. A structural analysis with histopathological correlation. Circulation 87: 1179–1187

    Article  Google Scholar 

  • Conklin JL, Enlow DH, Bang S (1965) Methods for the demonstration of lipid applied to compact bone. Stain Technol 40: 183–191

    Google Scholar 

  • Davies MJ, Richardson PD, Woolf N et al (1993) Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content. Br Heart J 69: 377–381

    Article  Google Scholar 

  • Doherty MJ, Ashton BA, Walsh Set al (1998) Vascular pericytes express osteogenic potential in vitro and in vivo. J Bone Miner Res 13: 828–838

    Article  Google Scholar 

  • Doherty TM, Detrano RC, Mautner SL et al (1999) Coronary calcium: the good, the bad, and the uncertain. Am Heart J 137: 806–814

    Article  Google Scholar 

  • Edmonds ME, Morrison N, Laws JW et al (1982) Medial arterial calcification and diabetic neuropathy. Br Med J (Clin Res Ed) 284: 928–930

    Article  Google Scholar 

  • Fitzpatrick LA, Severson A, Edwards WD et al (1994) Diffuse calcification in human coronary arteries. Association of osteopontin with atherosclerosis. J Clin Invest 94: 15971604

    Google Scholar 

  • Fleet JC, Hock JM (1994) Identification of osteocalcin mrna in nonosteoid tissue of rats and humans by reverse transcription-polymerase chain reaction. J Bone Miner Res 9: 1565–1573

    Article  Google Scholar 

  • Hamby RI, Tabrah F, Wisoff BG et al (1974) Coronary artery calcification: clinical implications and angiographic correlates. Am Heart J 87: 565–570

    Article  Google Scholar 

  • Haust MD, More RH (1965) Spontaneous lesions of the aorta in the rabbit. In: Roberts JC, Straus R (eds) Comparative atherosclerosis: the morphology of spontaneous and induced atherosclerotic lesions in the animals and its relation to human diseases. Harper and Row, New York, pp 255–275

    Google Scholar 

  • Hirota S, Imakita M, Kohri K et al (1993) Expression of osteopontin messenger ma by macrophages in atherosclerotic plaques. A possible association with calcification. Am J Pathol 143: 1003–1008

    Google Scholar 

  • Irving JT, Wuthier RE (1968) Histochemistry and biochemistry of calcification with special reference to the role of lipids. Clin Orthop 56: 237–260

    Google Scholar 

  • Kragel AH, Reddy SG, Wittes JT et al (1989) Morphometric analysis of the composition of atherosclerotic plaques in the four major epicardial coronary arteries in acute myocardial infarction and in sudden coronary death. Circulation 80: 1747–1756

    Article  Google Scholar 

  • Leary T (1936) Atherosclerosis: special consideration of aortic lesions. Arch Pathol 21: 419–419

    Google Scholar 

  • Lee RT (2000) Atherosclerotic lesion mechanics versus biology. Z Kardiol 89 [Suppl 21: 80–84

    Article  Google Scholar 

  • Lee RT, Grodzinsky AJ, Frank EH et al (1991) Structure-dependent dynamic mechanical behavior of fibrous caps from human atherosclerotic plaques. Circulation 83: 1764–1770

    Article  Google Scholar 

  • Long ER (1967) Development of our knowledge of arteriosclerosis. In: Blumenthal HT (eds) Cowdry’s arteriosclerosis. A survey of the problem. Thomas, Springfield, pp 6–7

    Google Scholar 

  • Loree HM, Tobias BJ, Gibson LJ et al (1994) Mechanical properties of model atherosclerotic lesion lipid pools. Arterioscler Thromb 14: 230–234

    Article  Google Scholar 

  • Mascola A, Ko J, Bakhsheshi H et al (2000) Electron beam tomography comparison of culprit and non-culprit coronary arteries in patients with acute myocardial infarction. Am J Cardiol 85: 1357–1359

    Article  Google Scholar 

  • Mönckeberg JG (1903) Ãœber die reine Mediaverkalkung der Extremitätenarterien and ihr Verhalten zur Arteriosklerose. Virchows Arch 171: 141–167

    Article  Google Scholar 

  • Mönckeberg JG (1914) Mediaverkalkung and Atherosklerose. Virchows Arch 216: 408–416

    Article  Google Scholar 

  • Naghavi M, Madjid M, Khan MR et al (2001) New developments in the detection of vulnerable plaque. Curr Atheroscler Rep 3: 125–135

    Article  Google Scholar 

  • Parhami F, Morrow AD, Balucan J et al (1997) Lipid oxidation products have opposite effects on calcifying vascular cell and bone cell differentiation. A possible explanation for the paradox of arterial calcification in osteoporotic patients. Arterioscler Thromb Vasc Biol 17: 680–687

    Article  Google Scholar 

  • Proudfoot D, Skepper JN, Shanahan CM et al (1998) Calcification of human vascular cells in vitro is correlated with high levels of matrix gla protein and low levels of osteopontin expression. Arterioscler Thromb Vasc Biol 18: 379–388

    Article  PubMed  Google Scholar 

  • Rekhter MD, Zhang K, Narayanan AS et al (1993) Type i collagen gene expression in human atherosclerosis. Localization to specific plaque regions. Am J Pathol 143: 1634–1648

    Google Scholar 

  • Rumberger JA, Simons DB, Fitzpatrick LA et al (1995) Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area. A histopathologic correlative study. Circulation 92: 2157–2162

    Article  Google Scholar 

  • Sangiorgi G, Rumberger JA, Severson A et al (1998) Arterial calcification and not lumen stenosis is highly correlated with atherosclerotic plaque burden in humans: A histologic study of 723 coronary artery segments using nondecalcify-ing methodology. J Am Coll Cardiol 31: 126–133

    Article  Google Scholar 

  • Schmermund A, Schwartz RS, Adamzik M et al (2001) Coronary atherosclerosis in unheralded sudden coronary death under age 50: histo-pathologic comparison with `healthy’ subjects dying out of hospital. Atherosclerosis 155: 499–508

    Article  Google Scholar 

  • Schmid K, McSharry WO, Pameijer CH et al (1980) Chemical and physicochemical studies on the mineral deposits of the human atherosclerotic aorta. Atherosclerosis 37: 199–210

    Article  Google Scholar 

  • Schor AM, Allen TD, Canfield AE et al (1990) Pericytes derived from the retinal microvasculature undergo calcification in vitro. J Cell Sci 97: 449–461

    Google Scholar 

  • Shanahan CM, Cary NR, Metcalfe JC et al (1994) High expression of genes for calcification-regulating proteins in human atherosclerotic plaques. J Clin Invest 93: 2393–2402

    Article  Google Scholar 

  • Shanahan CM, Proudfoot D, Tyson KL et al (2000) Expression of mineralisation-regulating proteins in association with human vascular calcification. Z Kardiol 89 [Suppl 2]: 63–68

    Article  Google Scholar 

  • Shemesh J, Stroh CI, Tenenbaum A et al (1998) Comparison of coronary calcium in stable angina pectoris and in first acute myocardial infarction utilizing double helical computerized tomography. Am J Cardiol 81: 271–275

    Article  Google Scholar 

  • Stary HC (1990) The sequence of cell and matrix changes in atherosclerotic lesions of coronary arteries in the first forty years of life. Eur Heart J 11 [Suppl E]: 3–19

    Article  Google Scholar 

  • Stary HC (1995) The histological classification of atherosclerotic lesions in human coronary arteries. In: Fuster V, Ross R, Topol E (eds) Atherosclerosis and coronary artery disease. Lippincott-Raven Publishers, Philadelphia

    Google Scholar 

  • Stary HC (2000a) Natural history and histological classification of atherosclerotic lesions: an update. Arterioscler Thromb Vasc Biol 20: 1177–1178

    Article  Google Scholar 

  • Stary HC (2000b) Natural history of calcium deposits in atherosclerosis progression and regression. Z Kardiol 89 [Suppl 2]: 28–35

    Article  Google Scholar 

  • Tanimura A, McGregor DH, Anderson HC (1986) Calcification in atherosclerosis. I. Human studies. J Exp Pathol 2: 261–273

    Google Scholar 

  • Tintut Y, Parhami F, Bostrom K et al (1998) Camp stimulates osteoblast-like differentiation of calcifying vascular cells. Potential signaling pathway for vascular calcification. J Biol Chem 273: 7547–7553

    Article  Google Scholar 

  • Van der Wal AC, Becker AE, van der Loos CM et al (1994) Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 89: 36–44

    Article  Google Scholar 

  • Veress AI, Vince DG,Anderson PM et al (2000) Vascular mechan- ics of the coronary artery. Z Kardiol 89 [Suppl 21: 92–100

    Article  Google Scholar 

  • Virchow R (1863) Cellular pathology: as based upon physiological and pathological histology (translated by Frank Chance, 1971). Dover, pp 404–408

    Google Scholar 

  • Virmani R, Kolodgie FD, Burke AP et al (2000) Lessons from sudden coronary death: A comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 20: 1262–1275

    Article  Google Scholar 

  • Watson KE, Bostrom K, Ravindranath R et al (1994) Tgf-beta 1 and 25-hydroxycholesterol stimulate osteoblast-like vascular cells to calcify. J Clin Invest 93: 2106–2113

    Article  Google Scholar 

  • Watson KE, Parhami F, Shin V et al (1998) Fibronectin and collagen i matrixes promote calcification of vascular cells in vitro, whereas collagen iv matrix is inhibitory. Arterioscler Thromb Vasc Biol 18: 1964–1971

    Article  Google Scholar 

  • ??

    Google Scholar 

  • ??

    Google Scholar 

  • ??

    Google Scholar 

  • ??

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vliegenthart, R. (2004). Pathophysiology of Coronary Calcification. In: Oudkerk, M. (eds) Coronary Radiology. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06419-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06419-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-06421-4

  • Online ISBN: 978-3-662-06419-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics