Skip to main content

Electron Beam Computed Tomography (EBCT)

  • Chapter
Coronary Radiology

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

For many years, speed of image acquisition constituted a severe limitation to the use of CT scanners in cardiac imaging. The requirement for mechanical movement of both the X-ray tube and the detector array did not permit sufficiently fast data acquisition to avoid motion artifacts in computed tomography (CT) images of the heart. In the early 1980s, initial experience with the so-called dynamic spatial reconstructor (DSR) had demonstrated a potential diagnostic value of cardiac CT imaging (BEHRENBECK et al. 1982; ROBB et al. 1983). However, the DSR had limited spatial resolution and was a very complex system. It was never manufactured commercially. Soon thereafter, a new concept for cardiac CT imaging was introduced by a group of researchers around Douglas Boyd at the University of San Francisco. Termed “ultrafast CT” (UFCT), “5th generation CT”, “cine CT”, “electron-beam tomography” (EBT) or “electron beam computed tomography” (EBCT, the term most frequently used now), the system permitted for image acquisition without the need for mechanical movement of an X-ray tube. It provided substantially increased speed of acquisition, simultaneous multi-level imaging, and the ability to synchronize image generation to the cardiac cycle (BoYD et al. 1979; BOYD 1983). The company Imatron Inc. (San-Francisco, USA) started commercial production and distribution of EBCT systems in 1984. The company - the sole manufacturer of EBCT systems - developed several scanner generations (C-100, C-150 and C-300). Between 1993 and 1998, Imatron Inc. had a partnership with Siemens Medical Systems, which resulted in several technical improvements of the scanner. In 2001, General Electric Medical Systems (GEMS) acquired Imatron Inc. and created a daughter company named “GE Imatron Inc:’ for manufacturing, servicing and sales of EBCT. According to GEMS statements, the company is interested in further development of EBCT technology along with its own lines of spiral and multi-slice spiral mechanical CT. In November 2002, GEMS launched a new model of EBCT called ”e-Speed“. It is the first completely new EBCT scanner to be developed since the company bought Imatron in December 2001. e-Speed represents a significant improvement over the previous model, C300. The e-Speed scanner has a completely new system design, with a new power source (140 kW) for smoother, higher resolution (up to 13.5 1p/ cm), a new multislice detector system, and a new data acquisition system. This enables scan times of 50 and even 33 ms, two to three times faster than the previous EBT scanners. The e-Speed system is a high-performance imaging system suitable for both cardiac and non-cardiac applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achenbach S, Moshage W, Bachmann K (1997a) Detection of high-grade restenosis after PTCA using contrast-enhanced electron beam CT. Circulation 96: 2785–2788

    Article  PubMed  CAS  Google Scholar 

  • Achenbach S, Moshage W, Ropers D, Nossen J, Bachmann K (1997b) Nichtinvasive Koronarangiographie mittels Elektronenstrahltomogaphie: Methodik und klinische Evaluierung im Follow-up nach PTCA. Z Kardiol 86: 121–130

    Google Scholar 

  • Achenbach S, Moshage W, Ropers D, Nossen J, Bachmann K (1997c) Noninvasive, three-dimensional visualization of coronary artery bypass grafts by electron beam tomography. Am J Cardiol 79: 856–861

    Article  PubMed  CAS  Google Scholar 

  • Achenbach S, Moshage W, Ropers D, Bachmann K (1998a) Comparison of vessel diameters in electron beam tomography and quantitative coronary angiography. Int J Card Imaging 14: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Achenbach S, Moshage W, Ropers D, Bachmann K (1998b) Curved multiplanar reconstructions for the evaluation of contrast-enhanced electron beam CT of the coronary arteries. Am J Roentgenol 170: 895–899

    Article  CAS  Google Scholar 

  • Achenbach S, Moshage W, Ropers D, Nossen J, Daniel WG (1998c) Value of electron-beam computed tomography for the noninvasive detection of high-grade coronary-artery stenoses and occlusions. N Engl J Med 339: 1964–1971

    Article  PubMed  CAS  Google Scholar 

  • Achenbach S, Moshage W, Bachmann K (1998d) Noninvasive coronary angiography by contrast electron beam cornputed tomography. Clin Cardiol 21: 323–330

    Article  PubMed  CAS  Google Scholar 

  • Achenbach S, Ropers D, Regenfus M, Muschiol G, Daniel WG, Moshage W (2000b) Contrast enhanced electron beam computed tomography to analyse the coronary arteries in patients after acute myocardial infarction. Heart 84: 489493

    Google Scholar 

  • Achenbach S, Ulzheimer S, Baum U, Kachelrieß M, Ropers D, Giesler T, Bautz W, Daniel WG, Kalender W, Moshage W (2000c) Non-invasive coronary angiography by retrospectively ECG-gated multi-slice spiral CT. Circulation 102: 2823–2828

    Article  PubMed  CAS  Google Scholar 

  • Achenbach S, Ropers D, Regenfus M, Pohle K, Giesler T, Moshage W, Daniel WG (2001) Noninvasive coronary angiography by magnetic resonance imaging, electron-beam computed tomography, and multislice computed tomography. Am J Cardiol 88: e70 - e73

    Article  Google Scholar 

  • Achenbach S, Ropers S, Hauer S, Menendez T, Pohle K, Maeffert R, Kusus M, Regenfus M, Moshage W, Daniel WG (2002a) Electron beam tomography permits to noninvasively rule out coronary artery stenoses in patients scheduled for noncoronary cardiac surgery. JACC 39 [Suppl A]: 1096 (abstract)

    Article  Google Scholar 

  • Achenbach S, Pohle K, Ropers D, von Korn H, Ludwig J, Moshage W, Daniel W. (2002b) Velocity of coronary artery motion during the cardiac cycle: measurement by biplane coronary angiography. Eur Heart J 4 [Suppl]: 66 (abstract)

    Google Scholar 

  • Achenbach S, Giesler T, Ropers D, Ulzheimer S, Anders K, Wenkel E, Pohle K, Kachelriess M, Derlien H, Kalender WA, Daniel WG, Bautz W, Baum U (2002c) Comparison of image quality in contrast-enhanced coronary-artery visualization by electron beam tomography and retrospectively ECG-gated multi-slice spiral CT. Invest Radiol (in press)

    Google Scholar 

  • American College of Cardiology/American Heart Association Ad Hoc Task Force on Cardiac Catheterization (1991) ACC/ AHA guidelines for cardiac catheterization and cardiac catheterization laboratories. Circulation 84: 2213–2247

    Article  Google Scholar 

  • Becker C, Schatzl M, Feist H, Bauml A, Schopf UJ, Michalski G, Lechel U, Hengge M, Bruning R, Reiser M (1999) Assessment of the effective dose for routine protocols in conventional CT, electron beam CT and coronary angiography. RoFo 70: 99–104

    Google Scholar 

  • Behrenbeck T, Kinsey JH, Harris LD, Robb RA, Ritman EL (1982) Three-dimensional spatial, density, and temporal resolution of the dynamic spatial reconstructor. J Comput Assist Tomogr 6: 1138–1147

    Article  PubMed  CAS  Google Scholar 

  • Blackshear JL, Pietan JH (2002) Current results and new developments of coronary angiography with use of contrast-enhanced computed tomography of the heart. Mayo Clin Proc 77: 55–71

    Article  PubMed  Google Scholar 

  • Boyd DP (1983) Computerized computed tomography of the heart using scanning electron beams. In: Higgins CB (ed) CT of heart and great vessels: experimental evaluation in the clinical application. Futura, New York, pp 45–56

    Google Scholar 

  • Boyd DP, Gould GR, Quinn JR (1979) A proposed dynamic cardiac3-D densitometry for early detection and evaluation of heart disease IEEE Trans Nucl Sci 26: 2724–2727

    Google Scholar 

  • Brandt-Pohlmann M, Achenbach S, Pougratz G, Moshage W, Wortmann A. (1998) Non-invasive diagnosis of a congenital coronary artery fistula. Int J Card Imaging 14: 211–214

    Article  PubMed  CAS  Google Scholar 

  • Budoff MJ, Oudiz RJ, Zalace CP, Bakhsheshi H, Goldberg SL, French WJ, Rami TG, Brundage BH (1999) Intravenous three dimensional coronary angiography using contrast enhanced electron beam computed tomography. Am J Cardiol 83: 840–845

    Article  PubMed  CAS  Google Scholar 

  • Chernoff DM, Ritchie CJ, Higgins CB (1997) Evaluation of electron beam CT coronary angiography in healthy subjects. AJR 169: 93–99

    Article  PubMed  CAS  Google Scholar 

  • Dai R, Zhang S, Lu B, Cao C, He S, Bai H, Jing B (1998) Electron-beam CT angiography with three-dimensional reconstruction in the evaluation of coronary artery bypass grafts. Acad Radiol 1998 5: 863–867

    Article  Google Scholar 

  • De Feyter PJ, Nieman K, van Ooijlen P, Oudkerk M (2000) Non-invasive coronary artery imaging with electron beam computed tomography and magnetic resonance imaging Heart 84: 442–448

    Google Scholar 

  • Enzweiler CN, Kivelitz DE, Wiese TH, Taupitz M, Hohn S, Borges AC, Pietsch L, Dohmen P, Baumann G, Hamm B (2000) Coronary artery bypass grafts: improved electron-beam tomography by prolonging breath holds with preoxygenation. Radiology 217: 278–283

    PubMed  CAS  Google Scholar 

  • Ezhov M, Lyakishev A, Veselova T, Sinitsyn V, Ternovoy S, Naumov V, Colombo A (2002) Electron-beam computed tomography in assessment of coronary lesions before and after stenting in a patient with Kawasaki disease. Case report. Eur J Radiol (in press)

    Google Scholar 

  • Funabashi N, Kobayashi Y, Rubin GD (2001) Three-dimensional images of coronary arteries after heart transplantation using electron-beam computed tomography data with volume rendering. Circulation 103: e25 - e26

    Article  PubMed  CAS  Google Scholar 

  • Gerber TC, Sheedy PF, Bell MR, Hayes DL, Rumberger JA, Behrenbeck T, Holmes DR Jr, Schwartz RS (2001) Evaluation of the coronary venous system using electron beam computed tomography. Int J Cardiovasc Imaging 17: 65–75

    Article  PubMed  CAS  Google Scholar 

  • Gerber TC, Kuzo R, Karstaedt N, Lane G, Morin R, Sheedy II P, Saffard R, Blackshear J, Pietan J (2002) Current result and new developments of coronary angiography with use of contrast enhanced computed tomography of the heart. Mayo Clinic Proc 77: 55–71

    Article  Google Scholar 

  • Giesler T, Baum U, Ropers D, Ulzheimer S, Wenkel E, Mennicke M, Bautz W, Kalender W, Daniel WG, Achenbach S (2002) Noninvasive visualization of coronary arteries using contrast-enhanced multidetector CT: influence of heart rate on image quality and stenosis detection. Am J Roentgenol 179 (in press)

    Google Scholar 

  • Gould RG (1992) Principles of ultrafast computed tomography: historical aspects, mechanism, and scanner characteristics. In: Stanford W, Rumberger JA (eds) Ultrafast computed tomography in cardiac imaging: principles and practice. Futura, Mt Kisko, NY, pp 1–16

    Google Scholar 

  • Gronemeyer D, Erbel R (1995) Noninvasive evaluation of the patency of coronary vessel stents using electron beam tomography segment images with administration of contrast media Z Kardiol 84: 892–897

    Google Scholar 

  • Gulbins H, Reichenspurner H, Becker C, Boehm DH, Knez A, Schmitz C, Bruening R, Haberl R, Reichart B (1998) Preoperative 3D-reconstructions of ultrafast-CT images for the planning of minimally invasive direct coronary artery bypass operation ( MIDCAB ). Heart Surg Forum 1: 111–115

    Google Scholar 

  • Ha JW, Cho SY, Shim WH, Chung N, Jang Y, Lee HM, Choe KO, Chung WJ, Choi SH, Yoo KJ, Kang MS (1999) Noninvasive evaluation of coronary artery bypass graft patency using three-dimensional angiography obtained with contrast-enhanced electron beam CT. Am J Roentgenol 172: 10551059

    Google Scholar 

  • He S, Dai R, Chen Y, Bai H (2001a) Optimal electrocardiographically triggered phase for reducing motion artefact at electron-beam CT in the coronary artery. Acad Radiol 8: 48–56

    Article  PubMed  CAS  Google Scholar 

  • He S, Dai R, Lu B, Cao C, Bai H, Jing B (2001b) Medial axis reformation: a new visualization method for CT angiography. Acad Radiol 8: 726–733

    Article  PubMed  CAS  Google Scholar 

  • Hernigou A, Mousseaux E, Grataloup C. Augusto M, Plainfosse MC Gaux JC (1994) Electron canon computed tomography. Technique and clinical applications in cardiac imaging. J Radiol 75: 675–680

    Google Scholar 

  • Hoshi T, Yamauchi T, Kanauchi T, Konno M, Imai K, Suwa J, Onoguchi K, Hashimoto K, Horie T (2001) Three-dimensional computed tomography angiography of coronary artery bypass graft with electron beam tomography. J Cardiol 38: 197–202

    PubMed  CAS  Google Scholar 

  • Hunhold P, Vogt FM, Schmermund A, Kerkoff G, Ewen K, Debatin JF, Barkhousen J (2002) Radiation exposure by multislice CT and electron-beam CT in coronary artery imaging. Abstract book, ECR2002, Vienna, p 217

    Google Scholar 

  • Jakobs TF, Becker CR, Ohnesorge B et al (2002) Multislice helical CT of the heart with retrospective ECG gating: reduction of radiation exposure by ECG-controlled tube current modulation. Eur Radiol 12: 1081–1086

    Article  PubMed  Google Scholar 

  • Johnson PR, Truitt TD (1994) Saphenous vein coronary artery bypass graft aneurysm demonstrated by electron beam CT. J Comput Assist Tomogr 18: 488–491

    Article  PubMed  CAS  Google Scholar 

  • Knez A, Haberl R, Becker C, Becker A, Engelmann M, Bruning R, Reiser M, Steinbeck G (1998) Significance of electron-beam tomography in the evaluation of the patency of aortocoronary bypasses. Radiologe 38: 1012–1020

    Article  PubMed  CAS  Google Scholar 

  • Knollmann FD, Pasic M, Zurbrugg HR, Knorig J, Spiegelsberger S, Loebe M, Hummel M, Beier J, Vogl TJ, Hosten N, Hetzer R, Felix R (1998) Electron-beam computed tomography in heart surgery. Radiologe 38: 1045–1053

    Article  PubMed  CAS  Google Scholar 

  • Leber AW, Knez A, Mukherjee R, White C, Huber A, Becker A, Becker CR, Reiser M, Haberl R, Steinbeck G (2001) Usefulness of calcium scoring using electron beam computed tomography and noninvasive coronary angiography in patients with suspected coronary artery disease. Am J Cardiol 88: 219–223

    Article  PubMed  CAS  Google Scholar 

  • Lee ML, Chiu IS, Chen SJ, Chaou WT (2002) Imaging characteristics of anomalous left coronary artery from the pulmonary artery. J Thorac Imaging17: 96–100

    Google Scholar 

  • Lu B, Dai R, Bai H, He S, Jing B, Zhuang N, Gao R, Chen J, Budoff MJ (2000) Detection and analysis of intracoronary artery stent after PTCA using contrast-enhanced three-dimensional electron beam tomography. J Invasive Cardiol 12: 1–6

    PubMed  CAS  Google Scholar 

  • Lu B, Dai RP, Bai H, He S, Jing BL, Jiang SL, Zhuang N, Sun XG, Budoff MJ (2001a) Coronary artery stenoses: a phantom study using contrast enhanced three-dimensional electron beam tomography. Clin Imaging 25: 95–100

    Article  PubMed  CAS  Google Scholar 

  • Lu B, Dai RP, Jiang SL, Bai H, He S, Zhuang N, Sun X, Budoff MJ (2001b) Effects of window and threshold levels on the accuracy of three-dimensional rendering techniques in coronary artery electron-beam CT angiography. Acad Radiol 8: 754–761

    Article  PubMed  CAS  Google Scholar 

  • Lu B, Mao SS, Zhuang N, Bakhsheshi H, Yamamoto H, Takasu J, Liu SC, Budoff MJ (2001c) Coronary artery motion during the cardiac cycle and optimal ECG triggering for coronary artery imaging. Invest Radio! 36: 250–256

    Article  CAS  Google Scholar 

  • Lu B, Dai RP, Zhuang N, Budoff MJ (2002a) Noninvasive assessment of coronary artery bypass graft patency and flow characteristics by electron-beam tomography. J Invasive Cardiol 14: 19–24

    PubMed  Google Scholar 

  • Lu B, Zhuang N, Mao SS, Bakhsheshi H, Liu S, Budoff M (2002b) Image quality of three-dimensional electron beam coronary angiography. J Comput Assist Tomogr 26: 202–209

    Article  PubMed  Google Scholar 

  • Mao SS, Oudiz RJ, Bakhsheshi H, Wang SJ, Brundage BH (1996) Variation of heart rate and electrocardiograph trigger interval during ultrafast computed tomography. Am J Card Imaging 10: 239–243

    PubMed  CAS  Google Scholar 

  • Mao SS, Bakhsheshi H, Lu B, Liu SC, Oudiz RJ, Budoff MJ (2001) Effect of electrocardiogram triggering on reproducibility of coronary artery calcium scoring. Radiology 220: 707–711

    Article  PubMed  CAS  Google Scholar 

  • McCollough CH, Liu HH (1995) Breast dose during electron-beam CT: measurement with film dosimetry. Radiology 196: 153–157

    PubMed  CAS  Google Scholar 

  • McCollough CH, Morin RL (1994) The technical design and performance of ultrafast computer tomography. Radiol Clin North Am 32: 521–536

    PubMed  CAS  Google Scholar 

  • Mohlenkamp S, Pump H, Baumgart D, Haude M, Gronemeyer DH, Seibel RM, Schwartz RS, Erbel R (1999) Minimally invasive evaluation of coronary stents with electron beam computed tomography: in vivo and in vitro experience. Catheter Cardiovasc Intery 48: 39–45

    Article  CAS  Google Scholar 

  • Moshage WE, Achenbach S, Seese B, Bachmann K, Kirchgeorg M (1995) Coronary artery stenoses: three-dimensional imaging with electrocardiographically triggered, contrast agent-enhanced, electron-beam CT. Radiology 196: 707714

    Google Scholar 

  • Nakanishi T, Ito K, Imazu M,Yamakido M (1997) Evaluation of coronary artery stenoses using electron-beam CT and multiplanar reformation. J Comput Assist Tomogr 21: 121–127

    CAS  Google Scholar 

  • Nieman K, Oudkerk M, Rensing BJ, van Ooijen P, Munne A, van Geuns RJ, de Feyter PJ (2001) Coronary angiography with multi-slice computed tomography. Lancet 357: 599–603

    Article  PubMed  CAS  Google Scholar 

  • Nieman K, van Geuns R-J M, Wieloplsky P, Pattynama PMT, de Feyter PJ (2002) Noninvasive coronary imaging in the new millennium: a comparison of computed tomography and magnetic resonance techniques. Rev Cardiovasc Med 3: 77–84

    PubMed  Google Scholar 

  • Nikolaou K, Huber A, Knez A, Becker C, Bruening R, Reiser M (2002) Intraindividual comparison of contrast-enhanced electron-beam computed tomography and navigator-echobased magnetic resonance imaging for noninvasive coronary artery angiography. Eur Radiol 12: 1663–1671

    Article  PubMed  Google Scholar 

  • Ohnesorge BM, Becker CR, Flohr TG, Reiser MF (2002) Multi-slice CT in cardiac imaging. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Ohtsuka T, Takamoto S, Endoh M, Ono M, Minami M (1998) Ultrafast computed tomography for minimally invasive coronary artery bypass grafting. J Thorac Cardiovasc Surg 116: 173–174

    Article  PubMed  CAS  Google Scholar 

  • Prokop M (2001) Dosisoptimierung in der thorakalen Computer-Tomographie. Radiologe 41: 269–278

    Article  PubMed  CAS  Google Scholar 

  • Pump H, Moehlenkamp S, Sehnert C, Schimpf SS, Erbel R, Seibel RM, Groenemeyer DH (1998) Electron-beam CT in the noninvasive assessment of coronary stent patency. Acad Radiol 5: 858–862

    Article  PubMed  CAS  Google Scholar 

  • Pump H, Mohlenkamp S, Sehnert CA, Schimpf SS, Schmidt A, Erbel R, Gronemeyer DH, Seibel RM (2000) Coronary arterial stent patency: assessment with electron-beam CT. Radiology 214: 447–452

    PubMed  CAS  Google Scholar 

  • Reddy GP, Chernoff DM, Adams JR, Higgins CB (1998) Coronary artery stenoses: assessment with contrast-enhanced electron-beam CT and axial reconstructions. Radiology 208: 167–172

    PubMed  CAS  Google Scholar 

  • Reiner JS,Katz RJ, WassermanAG (1999) Electron beam computed tomographic angiography and 3-dimensional reconstruction of a stented saphenous vein graft. Circulation 99: e16

    Google Scholar 

  • Rensing BJ, Bongaerts A, van Geuns RJ, van Ooijen PMA, Oudkerk M, de Feyter PJ (1998) Intravenous coronary angiography by electron beam computed tomography. A clinical evaluation. Circulation 98: 2509–2512

    Google Scholar 

  • Rienmuller R, Kern R, Baumgartner C, Hackel B (1997) Electron beam computerized tomography ( EBCT) of the heart. Radiologe 37: 410–416

    Google Scholar 

  • Rienmuller R, Brekke O, Kampenes VB, Reiter U (2001) Dimeric versus monomeric nonionic contrast agents in visualization of coronary arteries. Eur J Radiol 38: 173–178

    Article  PubMed  CAS  Google Scholar 

  • Ritchie CJ, Goodwin JD, Crawford CR, Stanford W, Anno H, Kim Y (1992). Minimum scan speeds for suppression of motion artifacts in CT. Radiology 185: 37–42

    PubMed  CAS  Google Scholar 

  • Robb RA, Hoffman EA, Sinak EJ et al (1983) High-speed tree-dimensional x-ray computed tomography: the dynamic spatial reconstructor. Proc IEEE 71: 308

    Article  Google Scholar 

  • Ropers D, Moshage W, Daniel WG, Jessl J, Gottwik M, Achenbach S (2001) Visualization of coronary artery anomalies and their anatomic course by contrast-enhanced electron beam tomography and three-dimensional reconstruction. Am J Cardiol 87: 193–197

    Article  PubMed  CAS  Google Scholar 

  • Ropers D, Gehling G, Pohle K, Maeffert R, Regenfus M, Moshage W, Schuster P, Daniel WG, Achenbach S (2002a) Anomalous course of the left main or LAD originating from the right sinus of valsalva - identification of four common variants by electron beam tomography. Circulation 105: e42 - e43

    Article  PubMed  Google Scholar 

  • Ropers D, Regenfus M, Stilianakis N, Birke S, Kessler W, Moshage W, Laub G, Daniel WG, Achenbach S (2002b) A direct comparison of noninvasive coronary angiography by electron beam tomography and navigator-echo-based magnetic resonance imaging for the detection of restenosis following coronary angioplasty. Invest Radiol 37: 386–392

    Article  PubMed  Google Scholar 

  • Schaffler GJ, Groell R, Peichel KH, Rienmuller R (2000) Imaging the coronary venous drainage system using electron-beam CT. Surg Radiol Anat 22: 35–39

    Article  PubMed  CAS  Google Scholar 

  • Schiele TM, Weber C, Rieber J, Konig A, Theisen K, Leinsinger G, Reichart B, Klauss V (2002) Images in cardiovascular medicine. Septal course of the left main coronary artery originating from the right sinus of Valsalva. Circulation 105: 1511–1512

    Google Scholar 

  • Schmermund A, Haude M, Sehnert C, Altmaier K, Baumgart D, Gorge G, Seibel R Gronemeyer D, Erbel R (1995) Noninvasive evaluation of the patency of coronary vessel stents using electron beam tomography segment images with administration of contrast media. Z Kardiol 84: 892–897

    PubMed  CAS  Google Scholar 

  • Schmermund A, Haude M, Baumgart D, Gorge G, Gronemeyer D, Seibel R, Sehnert C, Erbel R (1996) Non-invasive assessment of coronary Palmaz-Schatz stents by contrast enhanced electron beam computed tomography. Eur Heart J 17: 1546–1553

    Article  PubMed  CAS  Google Scholar 

  • Schmermund A, Rensing BJ, Sheedy PF, Bell MR, Rumberger JA (1998) Intravenous electron-beam computed tomographic coronary angiography for segmental analysis of coronary artery stenoses. J Am Coll Cardiol 31: 1547–1554

    Article  PubMed  CAS  Google Scholar 

  • Schroeder S, Kopp AF, Baumbach A, Meisner C, Kuettner A, Georg A, Ohnesorge B, Herdeg C, Claussen CD, Karsch KR (2001) Noninvasive detection and evaluation of atherosclerotic coronary plaques with multislice computed tomography. J Am Coll Cardiol 37: 1430–1435

    Article  PubMed  CAS  Google Scholar 

  • Stanford W, Rumberger J (1992) Ultrafast computed tomography in cardiac imaging: principles and practice. Futura, New York

    Google Scholar 

  • Stanford W, Krachmer M, Galvin JR (1991) Ultrafast computed tomography in assessing coronary bypass grafts. Am J Card Imaging 5: 21–28

    PubMed  CAS  Google Scholar 

  • Stanford W, Thompson BH, Weiss RM, Galvin JR (1993) Coronary artery visualization using ultrafast computed tomography. Am J Card Imaging 7: 243–251

    PubMed  CAS  Google Scholar 

  • Tornita H (1999) Intravascular ultrasound and electron beam tomography of late developing coronary artery aneurysms after Kawasaki disease. Catheter Cardiovasc Intery 47: 114115

    Google Scholar 

  • Ueyama K, Ohashi H, Tsutsumi Y, Kawai T, Ueda T, Ohnaka M (1999) Evaluation of coronary artery bypass grafts using helical scan computed tomography. Catheter Cardiovasc Intery 46: 322–326

    Article  CAS  Google Scholar 

  • Van Geuns RJ, Oudkerk M, Rensing BJ, Bongaerts AH, de Bruin HG, Wielopolski PA, van Ooijen P, de Feyter PJ, Serruys PW (2002) Comparison of coronary imaging between magnetic resonance imaging and electron beam computed tomography. Am J Cardiol 2002 90: 58–63

    Article  Google Scholar 

  • Van Ooijen PM, Oudkerk M, van Geuns RJ, Rensing BJ, de Feyter PJ (2000) Coronary artery fly-through using electron beam computed tomography. Circulation 102: e6 - e10

    Article  PubMed  Google Scholar 

  • Vogl TJ, Abolmaali ND, Diebold T, Engelmann K, Ay M, Dogan S, Wimmer-Greinecker G, Moritz A, Herzog C (2002) Techniques for the detection of coronary atherosclerosis: multi-detector row CT coronary angiography. Radiology 223: 212–220

    Article  PubMed  Google Scholar 

  • Von Smekal A, Knez A, Seelos KC, Haberl R, Spiegl F, Reichart B, Steinbeck G, Reiser M (1997) A comparison of ultrafast computed tomography, magnetic resonance angiography and selective angiography for the detection of coronary bypass patency. RoFo166: 185–191

    Google Scholar 

  • Wang Y,Vidan E, Bergman GW (1999) Cardiac motion of coronary arteries: variability in the rest period and implications for coronary MR angiography. Radiology 213: 751–758

    PubMed  CAS  Google Scholar 

  • Weisser G, Lehmann KJ, Scheck R, Coppenrath E, Georgi M (1999) Dose and image quality of electron-beam CT compared with spiral CT. Invest Radiol 34: 415–420

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura N, Hamada S, Takamiya M, Kuribayashi S, Kimura K (1998) Coronary arteries anomalies with a shunt: evaluation with electron-beam CT. J Comput Assist Tomogr 22: 682–686

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sinitsyn, V.E., Achenbach, S. (2004). Electron Beam Computed Tomography (EBCT). In: Oudkerk, M. (eds) Coronary Radiology. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06419-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06419-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-06421-4

  • Online ISBN: 978-3-662-06419-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics