Skip to main content

Coronary Radiology Update — MR Coronary Angiography

  • Chapter
Coronary Radiology

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 160 Accesses

Abstract

Magnetic resonance coronary angiography (MRCA) was introduced in 1987 when it was demonstrated that imaging of the origins of the coronary arteries from the aortic root is possible (PAULIN et al. 1987). Nowadays, MRCA can routinely visualize the proximal and middle parts of the coronary arteries and some coronary artery branches. It is an accepted noninvasive imaging modality for the evaluation of congenital coronary artery anomalies and for the determination of the patency of bypass grafts and coronary stents. However, a reliable and robust detection of coronary artery stenoses or coronary artery disease (CAD) is not possible yet, and, therefore, currently MRCA cannot replace conventional coronary angiography for the detection of stenoses. Nevertheless, there is an ongoing development of MRCA techniques and sequences, and the blind prospective detection of CAD by MRCA is also under ongoing evaluation. To date, a description of the “one” MRCA technique that is currently used in clinical practice cannot be given. The purpose of this chapter is to give an overview on the challenges and principles and to describe the different technical approaches of MRCA. The practical aspects and the clinical applications of MRCA will be described, and the current status in the detection of CAD will be summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Achenbach S, Ropers D, Holle J, Muschiol G, Daniel WG, Moshage W (2000) In-plane coronary arterial motion velocity: measurement with electron-beam CT. Radiology 216: 457–463

    Google Scholar 

  • Aurigemma G, Reichek N, Axel L, Schiebler M, Harris C, Kressel H (1989) Noninvasive determination of coronary artery bypass graft patency by cine magnetic resonance imaging. Circulation 80: 1595–1602

    Article  Google Scholar 

  • Bernstein MA, Huston J, Lin C et al (2001) High-resolution intra-cranial and cervical MRA at 3T: technical considerations and initial experience. Magn Reson Med 46: 955–962

    Article  Google Scholar 

  • Bottomley PA, Lugo Olivieri CH, Giaquinto R (1997) What is the optimum phased array coil design for cardiac and torso magnetic resonance? Magn Reson Med 37: 591–599

    Article  Google Scholar 

  • Brittain JH, Hu BS, Wright GA, Meyer CH, Macovski A, Nishimura DG (1995) Coronaryangiographywith magnetization-prepared T2 contrast. Mag Reson Med 33: 689–696

    Article  Google Scholar 

  • Bunce NH, Jhooti P, Keegan J, Rahman SL, Bunce C, Firmin DN, Davies SW, Lorenz CH, Pennell DJ (2001) Evaluation of free-breathing three-dimensional magnetic resonance coronary angiography with hybrid ordered phase encoding (HOPE) for the detection of proximal coronary artery stenosis. J Magn Reson Imaging 14: 677–684

    Article  Google Scholar 

  • Bunce NH, Keegan J, Gatehouse PD, Moon JCC, Firmin DN, Hoffmann V, Pennell DJ (2002) Initial experience with the intravascular contrast agent NC100150-injection (Clariscan) for breath-hold and navigator-gated magnetic resonance coronary artery imaging. J Magn Reson Imaging 16: 217–223

    Article  Google Scholar 

  • Campeau NG, Huston J, Bernstein MA et al (2001) Magnetic resonance angiography at 3.0 tesla: initial clinical experience. Top Magn Reson Imaging 12: 183–204

    Article  Google Scholar 

  • Danias PG, Stuber M, Edelman RR, Manning WJ (1999) Coronary MRA: a clinical experience in the United States. J Magn Reson Imaging 10: 713–720

    Article  Google Scholar 

  • Debatin JF, Strong JA, Sostman HD, Negro-Vilar R, Paine SS, Douglas JM Jr, Pelc NJ (1993) MR characterization of blood flow in native and grafted internal mammary arteries. J Magn Reson Imaging 3: 443–450

    Article  Google Scholar 

  • Duerinckx AJ (1999) Coronary MR angiography. Radiol Clin North Am 37: 273–318

    Article  Google Scholar 

  • Duerinckx AJ, Urman MK (1994) Two-dimensional coronary MR angiography: analysis of initial clinical results. Radiology 193: 731–738

    Google Scholar 

  • Duerinckx AJ, Atkinson DP, Mintorovitch J, Simonetti OP, Urman MK (1996) Two-dimensional coronary MRA: limitations and artifacts. Eur Radiol 6: 312–325

    Article  Google Scholar 

  • Duerinckx AJ, Perloff JK, Currier JW (1999) Arteriovenous fistulas of the circumflex and right coronary arteries with drainage into an aneurysmal coronary sinus. Circulation 99: 2827–2828

    Article  Google Scholar 

  • Duerinckx AJ, Shaaban A, Lewis A, Perloff J, Laks H (2000) 3D MR imaging of coronary arteriovenous fistulas. Eur Radiol 10:1459–1463

    Google Scholar 

  • Frija G, Schouman-Claeys E, Lacombe P, Bismuth V, 011ivier JP (1989) A study of coronary artery bypass graft patency using MR imaging. J Comput Assist Tomogr 13: 226–232

    Article  Google Scholar 

  • Galjee MA, van Rossum AC, Doesburg T, van Eenige MJ, Visser CA (1996) Value of magnetic resonance imaging in assessing patency and function of coronary artery bypass grafts: an angiographically controlled study. Circulation 93: 660–666

    Article  Google Scholar 

  • Coronary Radiology Update–MR Coronary Angiography 133

    Google Scholar 

  • Gould KL, Lipscomb K (1974) Effects of coronary stenoses on coronary flow reserve and resistance. Am J Cardiol 34: 48–55

    Article  Google Scholar 

  • Greil GF, Stuber M, Botnar RM, Kissinger KV, Geva T, New-burger JW, Manning WJ, Powell AJ (2002) Coronary magnetic resonance angiography in adolescents and young adults with Kawasaki disease. Circulation 105: 908–911

    Article  Google Scholar 

  • Heyne JP, Leder U, Pohl P, Kaiser WA (2001) Darstellung einer Koronargefäßanomalie mit Aneurysma and arteriovenöser Fistel mittels MRT-Bolus tracking. Radiologe 41: 506–510

    Article  Google Scholar 

  • Ho VB, Foo TKF, Arai AE, Wolff SD (2001) Gadolinium-enhanced, vessel-tracking, two-dimensional coronary MR angiography: single-dose arterial-phase vs. delayed-phase imaging. J Magn Reson Imaging 13: 682–689

    Article  Google Scholar 

  • Hofman MB, Visser FC, van Rossum AC, Vink QM, Sprenger M, Westerhof N (1995) In vivo validation of magnetic resonance blood volume flow measurements with limited spatial resolution in small vessels. Mag Reson Med 33: 778–784

    Article  Google Scholar 

  • Hofman MB, Wickline SA, Lorenz CH (1998) Quantification of in-plane motion of the coronary arteries during the cardiac cycle: implications for acquisition window duration for MR flow quantification. J Magn Reson Imaging 8: 568–576

    Article  Google Scholar 

  • Holland A, Goldfarb J, Edelman R (1998) Diaphragmatic and cardiac motion during suspended breathing: preliminary experience and implications for breath-hold MR imaging. Radiology 209: 483–489

    Google Scholar 

  • Hong C, Becker CR, Huber A, Schoepf UJ, Ohnesorge B, Knez A, Brüning R, Reiser MF (2001) ECG-gated reconstructed multi-detector row CT coronary angiography: effect of varying trigger delay on image quality. Radiology 220: 712–717

    Article  Google Scholar 

  • Huber A, Nikolaou K, Gonschior P, Knez A, Stehling M, Reiser M (1999) Navigator echo-based repiratory gating for three-dimensional MR coronary angiography: results form healthy volunteers and patients with proximal coronary artery stenoses. AJR Am J Roentgenol 173: 95–101

    Article  Google Scholar 

  • Hundley WG, Hillis LD, Hamilton CA, Applegate RJ, Herrington DM, Clarke GD, Braden GA, Thomas MS, Lange RA, Peshock RM, Link KM (2000) Assessment of coronary arterial restenosis with phase-contrast magnetic resonance imaging measurements of coronary flow reserve. Circulation 101: 2375–2381

    Article  Google Scholar 

  • Ishida N, Sakuma H, Cruz BP, Shimono T, Tokui T, Yada I, Takeda K, Higgins CB (2001) MR flow measurement in the internal mammary artery-to-coronary artery bypass graft: comparison with graft stenosis at radiographic angiography. Radiology 220: 441–447

    Google Scholar 

  • Jenkins JP, Love HG, Foster CJ, Isherwood I, Rowlands DJ (1988) Detection of coronary artery bypass graft patency as assessed by magnetic resonance imaging. Br J Radiol 61: 2–4

    Article  Google Scholar 

  • Kalden P, Kreitner KF, Wittlinger T, Voigtländer T, Krummenauer F, Kestel J, Thelen M (1999) Assessment of coronary artery bypass grafts: value of different breath-hold MR imaging techniques. AJR Am J Roentgenol 172: 1359–1364

    Article  Google Scholar 

  • Kelton JR, Magin RL, Wright SM (1989) An algorithm for rapid image acquisition using multiple receiver coils. Proceedings of the SMRM 8th annual meeting, Amsterdam, p 1172

    Google Scholar 

  • Kessler W, Achenbach S, Moshage W, Zink D, Kroeker R, Nitz W, Laub G, Bachmann K (1997) Usefulness of respiratory gated magnetic resonance coronary angiography in assessing narrowings or = 50% in diameter in native coronary arteries and in aortocoronary bypass conduits. Am J Cardiol 80: 989–993

    Article  Google Scholar 

  • Kessler W, Laub G, Achenbach S, Ropers D, Moshage W, Daniel WG (1999) Coronary arteries: MR angiography with fast contrast-enhanced three-dimensional breath-hold imaging: initial experience. Radiology 210: 566–572

    Google Scholar 

  • Kim WY, Danias PG, Stuber M, Flamm SD, Plein S, Nagel E, Langerak SE, Weber OM, Pedersen EM, Schmidt M, Botnar RM, Manning WJ (2001) Coronary magnetic resonance angiography for the detection of coronary stenoses. N Engl J Med 345: 1863–1869

    Article  Google Scholar 

  • Kim WY, Stuber M, Bornert P, Kissinger KV, Manning WJ, Botnar RM (2002) Three-dimensional black-blood cardiac magnetic resonance coronary vessel wall imaging detects positive arterial remodeling in patients with nonsignificant coronary artery disease. Circulation 106: 296–299

    Article  Google Scholar 

  • Klessen C, Post F, Meyer J, Thelen M, Kreitner KF (2000) Depiction of anomalous coronary vessels and their relation to the great arteries by magnetic resonance angiography. Eur Radiol 10: 1855–1857

    Article  Google Scholar 

  • Kopp AF, Schroeder S, Kuettner A, Heuschmid M, Georg C, Ohnesorge B, Kuzo R, Claussen CD (2001) Coronary arteries: retrospectively ECG-gated multi-detector row CT angiography with selective optimization of the image reconstruction window. Radiology 221: 683–688

    Article  Google Scholar 

  • Langerak SE, Kunz P, Vliegen HW, Lamb HJ, Jukema JW, van der Wall EE, de Roos A (2001) Improved MR flow mapping in coronary artery bypass grafts during adenosine-induced stress. Radiology 218: 540–547

    Google Scholar 

  • Langerak SE, Kunz P, Vliegen HW, Jukema JW, Zwinderman AH, Steendijk P, Lamb HJ, van der Wall EE, de Roos A (2002a) MR flow mapping in coronary artery bypass grafts: a validation study with Doppler flow measurements. Radiology 222: 127–135

    Article  Google Scholar 

  • Langerak SE, Vliegen HW, de Roos A, Zwinderman AH, Jukema JW, Kunz P, Lamb HJ, van der Wall EE (2002b) Detection of vein graft disease using high-resolution magnetic resonance angiography. Circulation 105: 328–333

    Article  Google Scholar 

  • Lethimonnier F, Furber A, Morel 0, Geslin P, L’Hoste P, Tadei A, Jallet P, Caron-Poitreau C, Le Jeune JJ (1999) Three-dimensional coronary artery MR imaging using prospective real-time respiratory navigator and linear phase shift processing: comparison with conventional coronary angiography. Magn Reson Imaging 17: 1111–1120

    Article  Google Scholar 

  • Li D, Paschal CB, Haacke EM, Adler LP (1993) Coronary arteries: three-dimensional MR imaging with fat saturation and magnetization transfer contrast. Radiology 187: 401–406

    Google Scholar 

  • Liu YL, Riederer SJ, Rossman PJ, Grimm RC, Debbins JP, Ehman RL (1993) A monitoring, feedback, and triggering system for reproducible breath-hold MR imaging. Magn Reson Med 30: 507–511

    Article  Google Scholar 

  • Lorenz CH, Walker ES, Morgan VL, Klein SS, GrahamTP Jr (1999) Normal human right and left ventricular mass, systolic function, and gender differences by cine magnetic resonance imaging. J Card Magn Reson 1: 7–21

    Article  Google Scholar 

  • Manning WJ, Li W, Edelman R (1993) A preliminary report comparing magnetic resonance coronary angiography with conventional angiography. N Engl J Med 328: 828–832

    Article  Google Scholar 

  • McConnell MV, Ganz P, Selwyn AP, Li W, Edelman RR, Manning WJ (1995) Identification of anomalous coronary arteries and their anatomic course by magnetic resonance coronary angiography. Circulation 92: 3158–3162

    Article  Google Scholar 

  • McConnell MV, Khasgiwala VC, Savord BJ, Chen MH, Chuang ML, Edelman RR, Manning WJ (1997) Comparison of respiratory suppression methods and navigator locations for MR coronary angiography. AJR Am J Roentgenol 168: 1369–1375

    Article  Google Scholar 

  • Mueller MF, Fleisch M, Kroeker R, Chatterjee T, Meier B,Vock P (1997) Proximal coronary arteries: three-dimensional MR imaging with fat saturation and navigator echo. J Magn Reson Imaging 7: 644–651

    Article  Google Scholar 

  • Nikolaou K, Huber A, Knez A, Scheidler J, Petsch R, Reiser M (2001) Navigator echo-based respiratory gating for three-dimensional MR coronary angiography: reduction of scan time using a slice interpolation technique. Jcat 25: 378–387

    Google Scholar 

  • Nikolaou K, Huber A, Knez A, Becker C, Bruening R, Reiser M (2002) Intraindividual comparison of contrast-enhanced electron-beam computed tomography and navigator-echobased magnetic resonance imaging for noninvasive coronary artery angiography. Eur Radiol 12: 1663–1671

    Article  Google Scholar 

  • Paschal CB, Haacke EM, Adler LP (1993) Three-dimensional MR imaging of the coronary arteries: preliminary clinical experience. J Magn Reson Imaging 3: 491–500

    Article  Google Scholar 

  • Paulin S, von Schulthess GK, Fossel E, Krayenbuehl HP (1987) MR imaging of the aortic root and proximal coronary arteries. AJR Am J Roentgenol 148: 665–670

    Article  Google Scholar 

  • Pennell DJ, Bogren HG, Keegan J, Firmin DN, Underwood RS (1996) Assessment of coronary artery stenosis by magnetic resonance imaging. Heart 75: 127–133

    Article  Google Scholar 

  • Post JC, van Rossum AC, Bronzwaer JGF, de Cock CC, Hofman MBM, Valk J, Visser CA (1995) Magnetic resonance angiography of anomalous coronary arteries. A new gold standard for delineating the proximal course? Circulation 92: 3163–3171

    Article  Google Scholar 

  • Post JC, van Rossum AC, Hofman MBM, Valk J, Visser CA (1996) Three-dimensional respiratory-gated MR Angiography of coronary arteries: comparison with conventional coronary angiography. AJR Am J Roentgenol 166: 1399–1404

    Article  Google Scholar 

  • Post JC, van Rossum AC, Hofman MBM, de Cock CC, Valk J, Visser CA (1997) Clinical utility of two-dimensional magnetic resonance angiography in detecting coronary artery disease. Eur Heart J 18: 426–433

    Article  Google Scholar 

  • Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42: 952–962

    Article  Google Scholar 

  • Regenfus M, Ropers D, Achenbach S, Kessler W, Laub G, Daniel WG, Moshage W (2000) Noninvasive detection of coronary artery stenosis using contrast-enhanced three-dimensional breath-hold magnetic resonance coronary angiography. J Am Coll Cardiol 36: 44–50

    Article  Google Scholar 

  • Rubinstein R, Askenase A, Thickman D, Feldman M, Agarwal J, Helfant R (1987) Magnetic resonance imaging to evaluate patency of aortocoronary bypass grafts. Circulation 76: 786–791

    Article  Google Scholar 

  • Sakuma H, Koskenvuo JW, Niemi P, Kawada N, Toikka JO, Knuuti J, Laine H, Saraste M, Kormano M, Hartiala JJ (2000) Assessment of coronary flow reserve using fast velocity-encoded cine MR imaging: validation study using positron emission tomography. AJR Am J Roentgenol 175: 1029–1033

    Article  Google Scholar 

  • Sandstede J, Pabst T, Beer M, Kellner M, Kenn W, Neubauer S, Hahn D (1998) Dreidimensionale MR-Koronarangiographie in Navigator-Technik: Darstellung des proximalen Verlaufs einer Koronararterienanomalie. Fortschr Röntgenstr 169: 433–437

    Article  Google Scholar 

  • Sandstede J, Pabst T, Beer M, Geis N, Kenn W, Neubauer S, Hahn D (1999a) Three-dimensional MR coronary angiography using navigator technique compared with conventional coronary angiography. AJR Am J Roentgenol 172: 135–139

    Article  Google Scholar 

  • Sandstede J, Pabst T, Kenn W, Beer M, Neubauer S, Hahn D (1999b) Dreidimensionale MR-Koronarangiographie in Navigator-Technik in der Primardiagnostik der koronaren Herzerkrankung: Vergleich zur konventionellen Koronarangiographie. Fortschr Rüntgenstr 170:269–274

    Google Scholar 

  • Sandstede J, Pabst T, Wacker C, Wiesmann F, Hoffmann V, Beer M, Kenn W, Bauer W, Hahn D (2001) 3d MR coronary angiography during breathhold using a new intravascular contrast agent (NC 100150 injection)–preliminary clinical experiences. Magn Reson Imaging 19:201–205

    Google Scholar 

  • Sardanelli F, Molinari G, Zandrino F, Balbi M (2000) Three-dimensional, navigator-echo MR coronary angiography in detecting stenoses of the major epicardial vessels, with conventional coronary angiography as the standard of reference. Radiology 214: 808–814

    Google Scholar 

  • Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 38: 591–603

    Article  Google Scholar 

  • Sommer T, Hofer U, Hackenbroch M, Meyer C, Flacke S, Schmiedel A, Schmitz C, Thiemann K, Omran H, Schild H (2002) Hochauflösende 3D-MR-Koronarangiographie in Echt-Zeit-Navigatortechnik: Ergebnisse aus 107 Patientenuntersuchungen. Fortschr Röntgenstr 174: 459–466

    Article  Google Scholar 

  • Stuber M, Botnar RM, Danias PG, Kissinger KV, Manning WJ (1999a) Submillimeter three-dimensional coronary MR angiography with real-time navigator correction: comparison of navigator locations. Radiology 212: 579–587

    Google Scholar 

  • Stuber M, Botnar RM, Danias PG, Sodickson DK, Kissinger KV, van Cauteren M, de Becker J, Manning WJ (1999b) Double-oblique free-breathing high resolution three-dimensional coronary magnetic resonance angiography. J Am Coll Cardiol 34: 524–531

    Article  Google Scholar 

  • Stuber M, Botnar RM, Fischer SE, Lamerichs R, Smink J, Harvey P, Manning WJ (2002) Preliminary report on in vivo coronary MRA at 3 Tesla in humans. Magn Reson Med 48: 425–429

    Article  Google Scholar 

  • Taupitz M, Schnorr J, Wagner S, Kivelitz D, Rogalla P, Claaßen G, Dewey M, Robert P, Corot C, Hamm B (2001) Coronary magnetic resonance angiography: dxperimental evaluation of the new rapid clearance blood pool contrast medium P792. Magn Reson Med 45: 932–938

    Article  Google Scholar 

  • Taylor AM, Jhooti P, Wiesmann F, Keegan J, Firmin DN, Pennell DJ (1997) MR navigator-echo monitoring of temporal changes in diaphragm position: implications for MR coronary angiography. J Magn Reson Imaging 7: 629–636

    Article  Google Scholar 

  • Taylor AM, Keegan J, Jhooti P, Firmin DN, Pennell DJ (1999) Calculation of a subject-specific adaptive motion-correction factor for improved real-time navigator echo-gated magnetic resonance coronary angiography. J Cardiovasc Magn Reson 1: 131–138

    Article  Google Scholar 

  • Uren NG, Melin JA, de Bruyne B, Wijns W, Baudhuin T, Camici PG (1994) Relation between myocardial blood flow and the severity of coronary-artery stenosis. N Engl J Med 330: 1782–1788

    Article  Google Scholar 

  • Van Geuns RJ, de Bruin HG, Rensing BJ, Wielopolski PA, Hulshoff MD, van Ooijen PM, Oudkerk M, de Feyter PJ (1999) Magnetic resonance imaging of the coronary arteries: clinical results from three dimensional evaluation of a respiratory gated technique. Heart 82: 515–519

    Google Scholar 

  • Van Rossum AC, Galjee MA, Doesburg T, Hofman M, Valk J (1993) The role of magnetic resonance in the evaluation of functional results after CABG/PTCA. Int J Card Imaging 9: 59–69

    Article  Google Scholar 

  • Coronary Radiology Update–MR Coronary Angiography 135

    Google Scholar 

  • Van Rossum AC, Bedaux WL, Hofman MB (1999) Morphologic and functional evaluation of coronary artery bypass conduits. J Magn Reson Imaging 10: 734–740

    Article  Google Scholar 

  • Vliegen HW, Doornbos J, de Roos A, Jukema JW, Bekedam MA, van der Wall EE (1997) Value of fast gradient echo magnetic resonance angiography as an adjunct to coronary arteriography in detecting and confirming the course of clinically significant coronary artery anomalies. Am J Cardiol 79: 773–776

    Article  Google Scholar 

  • Von Smekal A, Knez A, Seelos KC, Haberl R, Spiegl F, Reichart B, Steinbeck G, Reiser M (1997) A comparison of ultrafast computed tomography, magnetic resonance angiography and selective angiography for the detection of coronary bypass patency. Fortschr Roentgenstr 166: 185–191

    Article  Google Scholar 

  • Vrachliotis T, Bis K, Aliabadi D, Shetty A, Safian R, Simonetti O (1997) Contrast-enhanced breath-hold MR angiography for evaluating patency of coronary artery bypass grafts. Am J Roentgenol 168: 1073–1080

    Article  Google Scholar 

  • Wang Y, Christy PS, Korosec FR, Alley MT, Grist TM, Polzin JA, Mistretta CA (1995a) Coronary MRI with a respiratory feedback monitor: the 2D imaging case. Magn Reson Med 33: 116–121

    Article  Google Scholar 

  • Wang Y, Grimm RC, Rossman PJ, Debbins JP, Riederer SJ, Ehman RL (1995b) 3D coronary MR angiography in multiple breath-holds using a respiratory feedback monitor. Magn Reson Med 34:11–16

    Google Scholar 

  • Wang Y, Riederer SJ, Ehman RL (1995c) Respiratory motion of the heart: kinematics and the implications for the spatial resolution in coronary imaging. Magn Reson Med 33: 713–719

    Article  Google Scholar 

  • Watanabe Y, Nagayama M, Amoh Y, Fujii M, Fuku Y, Okumura A, van Cauteren M, Stuber M, Dodo Y (2002) High-resolution selective three-dimensional magnetic resonance coronary angiography with navigator-echo technique: Segment-by-segment evaluation of coronary artery stenosis. J Magn Reson Imaging 16: 238–245

    Article  Google Scholar 

  • White CS, Laskey WK, Stafford JL, NessAiver M (1999) Coronary MRA: use in assessing anomalies of coronary artery origin. J Comput Assist Tomogr 23: 203–207

    Article  Google Scholar 

  • White R, Caputo G, Mark A, Modin G, Higgins C (1987) Coronary artery bypass graft patency: noninvasive evaluation with MR imaging. Radiology 164: 681–686

    Google Scholar 

  • White RD, Pflugfelder PW, Lipton MJ, Higgins CB (1988) Coronary artery bypass grafts: evaluation of patency with cine MR imaging. AJR Am J Roentgenol 150: 1271–1274

    Article  Google Scholar 

  • Wintersperger B, Engelmann M, von Smekal A, Knez A, Penzkofer H, Hofling B, Laub G, Reiser M (1998) Patency of coronary bypass grafts: assessment with breath-hold contrast-enhanced MR angiography–value of a non-electrocardiographically triggered technique. Radiology 208: 345–351

    Google Scholar 

  • ??

    Google Scholar 

  • ??

    Google Scholar 

  • ??

    Google Scholar 

  • ??

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sandstede, J.J.W., Ho, KY.Y.J.A.M., Edelman, R.R. (2004). Coronary Radiology Update — MR Coronary Angiography. In: Oudkerk, M. (eds) Coronary Radiology. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06419-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06419-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-06421-4

  • Online ISBN: 978-3-662-06419-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics