Skip to main content

Multi-Dimensional Computed Coronary Visualization

  • Chapter
Coronary Radiology

Abstract

Contemporary medical imaging modalities such as magnetic resonance imaging (MRI), electron beam computed tomography (EBCT), and multi-detector computed tomography (MDCT) are able to provide the clinician with a wealth of information. To be able to evaluate and diagnose the (projection and volumetric) data from modern non-invasive and invasive imaging modalities, new visualization techniques (both for image rendering and image processing) are increasingly used. These visualization techniques have been described frequently both for coronary imaging (Nakanishi et al. 1997; Chen and Carroll 1998; Oijen et al. 1997) and for other applications in medicine (Rankin 1999; Kirchgeorg and Prokop 1998; Calhoun et al. 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Achenbach S, Moshage W, Ropers D, Bachmann K (1998) Curved multiplanar reconstructions for the evaluation of contrast-enhanced electron beam CT of the coronary arteries (see comments). AJR Am J Roentgenol 170: 895–899

    Article  Google Scholar 

  • Achenbach S, Ropers D, Regenfus M, Muschiol G, Daniel WG, Moshage W (2000a) Contrast enhanced electron beam computed tomography to analyse the coronary arteries is patients after acute myocardial infarction. Heart 84: 489–493

    Article  Google Scholar 

  • Achenbach, S, Ropers, D, Holle, J, Muschiol, G, Daniel, W. G, Moshage, W (2000b) In-plane coronary arterial motion velocity: measurement with electron-beam CT. Radiology 216: 457–463

    Google Scholar 

  • Addis KA, Hopper KD, Iyriboz TA, Liu Y, Wise SW, Kasales CJ, Blebea JS, Mauger DT (2001) CT angiography: in vitro comparison of five reconstruction methods. AJR 177: 1771–1776

    Google Scholar 

  • Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15: 827–832

    Article  Google Scholar 

  • Anderson CM, Saloner D, Tsuruda JS, Shapeero LG, Lee RE (1990) Artifacts in maximum-intensity-projection display of MR angiograms. AJR Am J Roentgenol 154: 623–629

    Article  Google Scholar 

  • Baskaran V, Pereles SF, Nemcek AA, Carr JC, Miller FH, Ly J, Krupinski E, Finn JP (2002) Gadolinium-enhanced 3D MR angiography of renal artery stenosis: a pilot comparison of maximum intensity projection, multiplanar reformatting, and 3D volume-rendering postprocessing algorithms. Acad Radiol 9: 50–59

    Article  Google Scholar 

  • Bazak N, Stamm G, Caldarone F, Lotz J, Leppert A, Galanski M (2000) PACS workstations 2000: evaluation, usability and performance. In: Gell G, Holzinger A, Wiltgen M (eds) Proceedings of the 18th international EuroPACS conference, vol 144. sterreichische Computer Gesellschaft, Graz, pp 133–142

    Google Scholar 

  • Bittl JA, Levin DC (1997) Coronary arteriography. In: Braunwald E (ed) Heart disease - a textbook of cardiovascular medicine, vol 1, chap 8. Saunders, Philadelphia, pp 240272

    Google Scholar 

  • Born N, Slager CJ, Phaff AC (1987) Sensing methods for selective recanalization by spark erosion. Proceedings of the annual confence of the IEEE Engineering in Medicine and Biology Society, pp 205–206

    Google Scholar 

  • Brennecke R, Kerensky R (1997) Image compression. In: Kennedy TE, Nissen SE, Simon R, Thomas JD, Tilkemeier PL (eds) Digital cardiac imaging in the 21st century: a primer. Cardiac and Vascular Information Working Group, Bethesda, Maryland

    Google Scholar 

  • Bruining N, von Birgelen C, di Mario C, Prati F, Li W, den Hoed W, Patijn M, De Feijter PJ, Serruys PW, Roelandt JRTC (1995) Dynamic three-dimensional reconstruction of ICUS images based on an ECG-gated pull back device. Computers in cardiology. IEEE Comp Soc, Piscataway, NJ, pp 633–636

    Google Scholar 

  • Calhoun PS, Kuszyk BS, Heath DG, Carley JC, Fishman EK (1999) Three-dimensional volume rendering of spiral CT data: theory and method. Radiographics 19: 745–764

    Google Scholar 

  • Chen SJ, Carroll JD (1998) 3D coronary angiography: improving visualization strategy for coronary interventions. In: Reiber JHC, Wall E (eds) What’s new in cardiovascular imaging? Kluwer Academic, Dortrecht, pp 61–78

    Google Scholar 

  • Davis HF, Snider AD (1988) Introduction to vector analysis, 5th edn. Universal Bookstall, New Delhi, 86:88

    Google Scholar 

  • Drebin RA, Carpenter L, Hanrahan P (1988) Proceedings siggraph 88, computer graphics. Volume rendering 22: 65–74

    Google Scholar 

  • Ebert DS, Heath DG, Kuszyk BS, Edwards L, Shaw CD, Kukla J, Bedwell T, Fishman EK (1998) Evaluating the potential and problems of three-dimensional computed tomography measurements of arterial stenosis. J Dig Imag 11: 151–157

    Article  Google Scholar 

  • Elvins TT (1992) A survey of algorithms for volume visualization. Comput Graph 26: 194–201

    Article  Google Scholar 

  • Evans JL, Ng KH, Wiet SG, Vonesh MJ, Burns WB, Radvany MG, Kane BJ, Davidson CJ, Roth SI, Kramer BL, Meyers SN, McPherson DD (1996) Accurate three-dimensional reconstruction of intravascular ultrasound data. Spatially correct three-dimensional reconstructions. Circulation 93: 567–567

    Article  Google Scholar 

  • Fishman EK, Ney DR (1993) Advanced computer applications in radiology: clinical applications. Radiographics 13: 463–475

    Google Scholar 

  • Fishman EK, Magid D, Ney DR, Chaney EL, Pizer SM, Rosenman JG, Levin DN,Vannier MW, Kuhlman JE, Robertson DD (1991) Three-dimensional imaging (published erratum appears in Radiology 1992, 182:899). Radiology 181: 321–337

    Google Scholar 

  • Funabashi N, Kobayashi Y, Rubin GD (2001a) Utility of three-dimensional volume rendering images using EBT to evaluate possible causes of ischemia from an anomalous origin of the RCA from the left sinus of valseva. Jpn Circ J 65: 575–578

    Article  Google Scholar 

  • Funabashi N, Kobayashi Y, Rubin GD (2001b) Three-dimensional images of coronary arteries after heart transplantation using electron-beam computed tomography data with volume rendering. Circulation 103: e25 - e26

    Article  Google Scholar 

  • Goedhart B, Reiber JHC (1998) How will DICOM change the cardiac catherisation environment? Cardiologie 5: 148–153

    Google Scholar 

  • Guggenheim N, Chappuis F, Suilen C, Doriot PA, Dorsaz PA, Descouts P, Rutishauser W (1992) 3D reconstruction of coronary arteries in view of flow measurement. Int J Card Imag 8:265–272

    Google Scholar 

  • Gur D, Good WF, Oliver JH, Thaete FL, Baron RL, Federle MP, Campbell WL, Rosenthal MS (1994) Sequential viewing of abdominal CT images at varying rates. Radiology 191: 119–122

    Google Scholar 

  • Hany TF, Schmidt M, Davis CP, Gohde SC, Debatin JF (1998) Diagnostic impact of four postprocessing techniques in evaluating contrast-enhanced three-dimensional MR angiography. AJR Am J Roentgenol 170: 907–912

    Article  Google Scholar 

  • He S, Dai R, Lu B, Cao C, Bai H, Jing B (2001) Medial axis reformation: a new visualization method for CT angiography. Acad Radiol 8: 726–733

    Article  Google Scholar 

  • Heath DG, Soyer PA, Kuszyk BS, Bliss DF, Calhoun PS, Bluemke DA, Choti MA, Fishman EK (1995) Three-dimensional spiral CT during arterial portography: comparison of three rendering techniques. Radiographics 15: 1001–1011

    Google Scholar 

  • Hindel R (1994) Implementation of the DICOM 3.0 standard - a pragmatic handbook. Radiological Society of North America, Oak Brook, IL

    Google Scholar 

  • Hofman MB,Wickline SA, Lorenz CH (1998) Quantification of in-plane motion of the coronary arteries during the cardiac cycle: implications for acquisition window duration for MR flow quantification. J Magn Reson Imaging 8: 568–576

    Article  Google Scholar 

  • Hoffmann R, Mintz GS (2000) Coronary in-stent restenosis–predictors, treatment and prevention. Eur Heart J 21: 1739–1749

    Article  Google Scholar 

  • Höhne KH, Bomans M, Pommert A, Tiede U (1990) Voxel based volume visualization techniques. In: Levoy M (ed) ACM siggraph course notes 11. Volume visualization algorithms and architecture, pp 66–83

    Google Scholar 

  • Honea R, McCluggage CW, Parker B, O’Neall D, Shook KA (1998) Evaluation of commercial PC-based DICOM image viewers. J Dig Imaging 11: 151–155

    Article  Google Scholar 

  • Johnson PT, Heath DG, Kuszyk BS, Fishman EK (1997) CT angiography: thoracic vascular imaging with interactive volume rendering technique. J Comput Assist Tomogr 21: 110–114

    Article  Google Scholar 

  • Kirchgeorg MA, Prokop M (1998) Increasing spiral CT benefits with postprocessing applications. Eur J Radiol 28: 39–54

    Article  Google Scholar 

  • Klessen C, Post F, Meyer J, Thelen M, Kreitner KF (2000) Depiction of anomalous coronary vessels and their relation to the great arteries by magnetic resonance angiography. Eur Radiol 10: 1855–1857

    Article  Google Scholar 

  • Knez A, Becker A, Becker C, Leber A, Reiser M, Steinbeck G (2002) Determination of coronary calcium with multi-slice spiral computed tomography: a comparative study with electron-beam CT. Int J Cardiovasc Imaging 18: 295–303

    Article  Google Scholar 

  • Krams R, Wentzel JJ, Oomen JA, Vinke R, Schuurbiers JC, de Feyter PJ, Serruys PW, Slager CJ (1997) Evaluation of endothelial shear stress and 3D geometry as factors determining the development of atherosclerosis and remodeling in human coronary arteries in vivo. Combining 3D reconstruction from angiography and IVUS (ANGUS) with computational fluid dynamics. Arterioscler Thromb Vasc Biol 17: 2061–2065

    Article  Google Scholar 

  • Kuszyk BS, Heath DG, Ney DR, Bluemke DA, Urban BA, Chambers TP, Fishman EK (1995) CT angiography with volume rendering: imaging findings. AJR Am J Roentgenol 165: 445–448

    Article  Google Scholar 

  • Kuszyk BS, Heath DG, Bliss DF, Fishman EK (1996) Skeletal 3D CT: advantages of volume rendering over surface rendering. Skeletal Radiol 25: 307–314

    Article  Google Scholar 

  • Laban M, Oomen JA, Slager CJ, Wentzel JJ, Krams R, Schuurbiers JCH, den Boer A, von Birgelen C, Serruys PW, de Feyter PJ (1995) ANGUS: a new approach to three dimensional reconstruction of coronary vessels by combined use of angiography and intravascular ultrasound. Computers in cardiology. IEEE Comp Soc, Piscataway, NJ, pp 325–328

    Google Scholar 

  • Langenhuysen RGA, Philipse PH (2001) Multiple archive storage server - white paper, Sept 26, Rogan Medical Systems

    Google Scholar 

  • Leber AW, Knez A, White CW, Becker A, von Ziegler F, Muehling 0, Becker C, Reiser M, Steinbeck G, Boekstegers P (2003) Composition of coronary atherosclerotic plaques in patients with acute myocardial infarction and stable angina pectoris determined by contrast-enhanced multislice cornputed tomography. Am J Cardiol 91: 714–718

    Article  Google Scholar 

  • Leclerc X, Godefroy O, Pruvo JP, Leys D (1995) Computed tomographic angiography for the evaluation of carotid artery stenosis. Stroke 26: 1577–1581

    Article  Google Scholar 

  • Leter EM, Nowak PJCM, Nieman K, de Feyer PJ, Carlier SG, Munne A, Serruys PW, Levendag PC (2002) Definition of a moving gross target volume for stereotactic radiation therapy of stented coronary arteries. Int J Radiat Oncol Biol Phys 52: 560–565

    Article  Google Scholar 

  • Li W, Bosch JG, Zhong Y, van Urk H, Gussenhoven EJ, Mastik F, van Egmond F, Rijsterborgh H, Reiber JHC, Bom N (1993) Image segmentation and 3D reconstruction of intravascular ultrasound images. In: Wei Y, Gu B (eds) Acoustical imaging. Plenum, New York, pp 489–496

    Google Scholar 

  • Liu Y, Hopper KD, Mauger DT, Addis KA (2000) CT angiographic measurement of the carotid artery: optimizing visualization by manipulating window and level settings and contrast material attenuation. Radiology 217: 494–500

    Google Scholar 

  • Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. Comput Graph 21: 163–169

    Article  Google Scholar 

  • Lu B, Dai RP, Jiang SL, Bai H, He S, Zhuang N, Sun X, Budoff MJ (2001) Effects of window and threshold levels on the accuracy of 3D rendering techniques in coronary artery electron-beam CT angiography. Acad Radiol 8: 754–761

    Article  Google Scholar 

  • Magnusson M, Lenz R, Danielsson PE (1991) Evaluation of methods for shaded surface display of CT volumes. Comput Med Imaging Graph 15: 247–256

    Article  Google Scholar 

  • Maintz D, Juergens KU, Wichter T, Grude M, Heindel W, Fischbach R (2003) Imaging of coronary artery stents using multislice computed tomography, in vitro evaluation. Eur Radiol 13: 830–835

    Google Scholar 

  • Malek AM, Alper SL, Izumo S (1999) Hemodynamic shear stress and its role in atherosclerosis. JAMA 282: 2035–2042

    Google Scholar 

  • Marks MP, Napel S, Jordan JE, Enzmann DR (1993) Diagnosis of carotid artery disease: preliminary experience with maximum-intensity-projection spiral CT angiography. AJR Am J Roentgenol 160: 1267–1271

    Article  Google Scholar 

  • Martinelli MA, von Thuna P (1987) Acoustic image system and method. USA patent 4821731

    Google Scholar 

  • Mathie AG, Strickland NH (1997) Interpretation of CT scans with PACS image display in stack mode. Radiology 203: 207–209

    Google Scholar 

  • McKay S, Potel MJ, Rubin JM (1982) Graphics methods for tracking three-dimensional heart wall motion. Comput Biomed Res 15: 455–473

    Article  Google Scholar 

  • Metz CE, Fencil LE (1989) Determination of three-dimensional structure in biplane radiography without prior knowledge of the relationship between the two views: theory. Med Phys 16: 45–51

    Article  Google Scholar 

  • Meyers SP, Talagala SL, Totterman S, Azodo MV, Kwok E, Shapiro L, Shapiro R, Pabico RC, Applegate GR (1995) Evaluation of the renal arteries in kidney donors: value of three-dimensional phase-contrast MR angiography with maximum-intensity-projection or surface rendering. AJR Am J Roentgenol 164: 117–121

    Article  Google Scholar 

  • Moshage WE, Achenbach S, Seese B, Bachmann K, Kirchgeorg M (1995) Coronary artery stenoses: three-dimensional imaging with electrocardiographically triggered, contrast agent-enhanced, electron-beam CT. Radiology 196: 707714

    Google Scholar 

  • Murakami T, Kashiwagi T, Nakamura H, Tsuda K, Azuma M, Tomoda K, Hori S, Kozuka T (1993) Display of MR angiograms: maximum intensity projection versus three-dimensional rendering. Eur J Radiol 17: 95–100

    Article  Google Scholar 

  • Nakanishi T, Ito K, Imazu M,Yamakido M (1997) Evaluation of coronary artery stenoses using electron-beam CT and multiplanar reformation. J Comput Assist Tomogr 21: 121–127

    Google Scholar 

  • Nakanishi T, Kohata M, Miyasaka K, Fukuoka H, Ito K, Imazu M (2000) Virtual endoscopy of coronary arteries using contrast-enhanced ECG-triggered electron beam CT data sets. AJR Am J Roentgenol 174: 1345–1347

    Article  Google Scholar 

  • Napel S, Marks MP, Rubin GD, Dake MD, McDonnell CH, Song SM, Enzmann DR, Jeffrey RB Jr (1992) CT angiography with spiral CT and maximum intensity projection. Radiology 185: 607–610

    Google Scholar 

  • Napel S, Rubin GD, Jeffrey RB Jr (1993) STS-MIP: a new reconstruction technique for CT of the chest. J Comput Assist Tomogr 17: 832–838

    Article  Google Scholar 

  • Ney DR, Fishman EK, Magid D (1990a) Three-dimensional imaging of computed tomography: techniques and applications. Ezquerra, NF. Proceedings of the first conference on visualization in biomedical computing IEEE Computer Society Press, Los Alamitos, California. pp 498–506

    Google Scholar 

  • Ney DR, Fishman EK, Magid D, Drebin RA (1990b) Volumetric rendering of computed tomography data: principles and techniques. IEEE Comput Graph Appl 9: 24–32

    Article  Google Scholar 

  • Nieman K, van Ooijen P, Rensing B, Oudkerk M, de Feyter P (2001a) Four-dimensional cardiac imaging with multislice computed tomography. Circulation 103: e62

    Google Scholar 

  • Nieman K, Oudkerk M, Rensing BJ, van Ooijen P et al (200lb) Coronary angiography with multi-slice computed tomography. Lancet 357:599–603

    Google Scholar 

  • Pace ME, Krebs TL, Wong-You-Cheong JJ, Daly B, Pomerantz SM, Siegel EL (1998) Comparison of three display methods for evaluating CT angiography data for the vascular assessment of renal donors. J Dig Imag 11 [Suppl 11: 145–148

    Article  Google Scholar 

  • Parker DL, Pope DL, van Bree R, Marshall HW (1987) Three-dimensional reconstruction of moving arterial beds from digital subtraction angiography. Comput Biomed Res 20: 166–185

    Article  Google Scholar 

  • Pelanek GA (1997) A DICOM cardiology exchange. In: Kennedy TE, Nissen SE, Simon R, Thomas JD, Tilkemeier PL (eds) Digital cardiac imaging in the 21st century: a primer. Cardiac and Vascular Information Working Group: Bethesda, Maryland

    Google Scholar 

  • Pollak T, Heuser H, Niederlag G, Brüggenwerth G, Kaulfuss K (2000) Evaluation of 7 PC-based diagnostic workstations. In: Gell G, Holzinger A, Wiltgen M (eds) Proceedings of the 18th international EuroPACS conference, vol 144. Österreichische Computer Gesellschaft, Graz, pp 114–125

    Google Scholar 

  • Prause GP, DeJong SC, McKay CR, Sonka M (1997) Towards a geometrically correct 3D reconstruction of tortuous coronary arteries based on biplane angiography and intravascular ultrasound. Int J Card Imaging 13: 451–462

    Article  Google Scholar 

  • Prokop M, Shin HO, Schanz A, Schaefer-Prokop CM (1997) Use of maximum intensity projections in CT angiography: a basic review. Radiographics 17: 433–451

    Google Scholar 

  • Rankin SC (1999) CT angiography. Eur Radiol 9: 297–310

    Article  Google Scholar 

  • Reddy GP, Chernoff DM, Adams JR, Higgins CB (1998) Coronary artery stenoses: assessment with contrast-enhanced electron-beam CT and axial reconstructions. Radiology 208: 167–172

    Google Scholar 

  • Reiber JHC, Gerbrands JJ, Booman F, Troost GJ, Boer A den, Slager CJ, Schuurbiers JCH (1982) Objective characterization of coronary obstructions from monoplane cineangiograms and three-dimensional reconstruction of an arterial segment from two orthogonal views. In: Schwartz MD (ed) Appl Comp in Med. IEEE

    Google Scholar 

  • Rensing BJ, Bongaerts AH, van Geuns RJ, van Ooijen PM, Oudkerk M, de Feyter PJ (1999a) Intravenous coronary angiography using electron beam computed tomography. Prog Cardiovasc Dis 42: 139–148

    Article  Google Scholar 

  • Rensing BJ, Bongaerts AH, van Geuns RJ, van Ooijen PM, Oudkerk M, de Feyter PJ (1999b) In vivo assessment of three dimensional coronary anatomy using electron beam computed tomography after intravenous contrast administration. Heart 82: 523–525

    Google Scholar 

  • Ropers D, Baum U, Pohle K, Anders K, Ulzheimer S, Ohnesorge B, Schlundt C, Bautz W, Daniel W, Achenbach S (2003) Detection of coronary artery stenoses with thin-slice multi-detector row spiral computed tomography and multiplanar reconstruction. Circulation 107: 664–666

    Article  Google Scholar 

  • Rosenfield K, Losordo W, RAmaswamy K, Pastore JO, Langevin E, Razvi S, Kosowsky BD, Isner JM (1991) Three-dimensional reconstruction of human coronary and peripheral arteries from images recorded during two-dimensional intravascular ultrasound examination. Circulation 84: 1938–1956

    Article  Google Scholar 

  • Rubin GD, Dake MD, Napel S, Jeffrey RB Jr, McDonnell CH, Sommer FG, Wexler L, Williams DM (1994) Spiral CT of renal artery stenosis: comparison of three-dimensional rendering techniques. Radiology 190: 181–189

    Google Scholar 

  • Rubin GD, Dake MD, Semba CP (1995) Current status of three-dimensional spiral CT scanning for imaging the vasculature. Radiol Clin North Am 22: 51–70

    Google Scholar 

  • Schmidt P (1999) From humble beginnings: the history of car- diac x-ray image management. Medicamundi 43: 10–15

    Google Scholar 

  • Schroeder S, Kopp AF, Baumbach A, Meisner C, Kuettner A, Georg C, Ohnesorge B, Herdeg C, Claussen CD, Karsch KR (2001) Noninvasive detection and evaluation of atherosclerotic coronary plaques with multislice computed tomography. J Am Coll Cardiol 37: 1430–1435

    Article  Google Scholar 

  • Schroeder S, Kopp AF, Ohnesorge B, Loke-Gie H, Kuettner A, Baumbach A, Herdeg C, Claussen CD, Karsch KR (2002) Virtual coronary angioscopy using multislice computed tomography. Heart 87: 205–209

    Article  Google Scholar 

  • Schuurbiers JC, von Birgelen C, Wentzel JJ, Born N, Serruys PW, de Feyter PJ, Slager CJ (2000) On the IVUS plaque volume

    Google Scholar 

  • error in coronary arteries when neglecting curvature. Ultrasound Med Biol 26:1403–1411

    Google Scholar 

  • Seltzer SE, Judy PF, Adams DF, Jacobson FL, Stark P, Kikinis R, Swensson RG, Hooton S, Head B, Feldman U (1995) Spiral CT of the chest: comparison of cine and film-based viewing. Radiology 197: 73–78

    Google Scholar 

  • Selvik G (1990) Roentgen stereophotogrammetric analysis. Acta Radiol 31: 113–126

    Article  Google Scholar 

  • Sigwart U, Puel J, Mirkovitch V, Joffre F, Kappenberger L (1987) Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. N Engl J Med 316: 701–706

    Article  Google Scholar 

  • Slager CJ (1987) Echo-vonkerosie rekanalisatie inrichting. Dutch patent application 87. 00632

    Google Scholar 

  • Slager CJ (1996) Catheter for obtaining three-dimensional reconstruction of a vascular lumen and wall. United States Patent 5,771, 895

    Google Scholar 

  • Slager CJ, Laban M, von Birgelen C, Krams R, Oomen JAF, den Boer A, Li W, de Feijter PJ, Serruys PW, Roelandt JRTC (1995) ANGUS: a new approach to three-dimensional reconstruction of geometry and orientation of coronary lumen and plaque by combined use of coronary angiography and IVUS. J Am Coll Cardiol 25: 144A

    Google Scholar 

  • Slager CJ, Wentzel JJ, Oomen JA, Schuurbiers JC, Krams R, von Birgelen C, Tjon A, Serruys PW, de Feyter PJ (1997) True reconstruction of vessel geometry from combined X-ray angiographic and intracoronary ultrasound data. Semin Intery Cardiol 2: 43–47

    Google Scholar 

  • Slager CJ, Wentzel JJ, Schuurbiers JC, Oomen JA, Kloet J, Krams R, von Birgelen C, van der Giessen WJ, Serruys PW, de Feyter PJ (2000) True 3Dimensional reconstruction of coronary arteries in patients by fusion of angiography and IVUS (ANGUS) and its quantitative validation. Circulation 102: 511–516

    Article  Google Scholar 

  • Soyer P, Heath D, Bluemke DA, Choti MA, Kuhlman JE, Reichle R, Fishman EK (1996) Three-dimensional helical CT of intrahepatic venous structures: comparison of three rendering techniques. J Comput Assist Tomogr 20: 122–127

    Article  Google Scholar 

  • Takahashi M, Ashtari M, Papp Z, Patel M, Goldstein J, Maguire WM, Eacobacci T, Khan A, Herman PG (1997) CT angiography of carotid bifurcation: artifacts and pitfalls in shaded-surface display. AJR 168: 813–817

    Google Scholar 

  • Terwisscha van Scheltinga J (2001) Technical background. In: Rogalla P, Terwisscha van Scheltinga J, Hamm B (eds) Virtual endoscopy and related 3D techniques. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Thomas JD, Nissen SE (1996) Digital storage and transmission of cardiovascular images: what are the costs, benefits and timetable for conversion? Heart 76: 13–17

    Article  Google Scholar 

  • Thomson E (1896) Stereoscopic roentgen pictures. Electr Eng 21: 256

    Google Scholar 

  • Thury A, Wentzel JJ, Schuurbiers JC, Ligthart JM, Krams R, de Feyter PJ, Serruys PW, Slager CJ (2001) Prominent role of tensile stress in propagation of a dissection after coronary stenting: computational fluid dynamic analysis on true 3D reconstructed segment. Circulation 104: E53 - E54

    Article  Google Scholar 

  • Traversie E, Tramarin R (2003) Intracoronary imaging with mul- tislice spiral computed tomography. N Engl J Med 348: e5

    Google Scholar 

  • Udupa JK (1999) Three-dimensional visualization and analysis methodologies: a current perspective. Radiographics 19: 783–806

    Google Scholar 

  • Udupa JK, Hung H-M (1990) Surface versus volume rendering: a comparative assessment. Proceedings of the first conference on visualization in biomedical computing. Ezquerra NF. IEEE Computer Society Press. Los Alamitos, California, pp 83–91

    Google Scholar 

  • Van Geuns RJ, Wielopolski PA, Rensing BJ, van Ooijen PM, Oudkerk M, de Feyter PJ (1999a) Magnetic resonance imaging of the coronary arteries: anatomy of the coronary arteries and veins in three-dimensional imaging. Coron Artery Dis 10: 261–267

    Google Scholar 

  • Van Geuns RJ, Wielopolski PA, de Bruin HG, Rensing BJ, van Ooijen PM, Hulshoff M, Oudkerk M, de Feyter PJ (1999b) Magnetic resonance imaging of the coronary arteries: techniques and results. Prog Cardiovasc Dis 42: 157–166

    Article  Google Scholar 

  • Van Ooijen PMA, Feyter PJ, Oudkerk M (1997) An introduction to three-dimensional cardiac image rendering and processing. Cardiology 4: 312–319

    Google Scholar 

  • Van Ooijen PM, Oudkerk M, van Geuns RJ, Rensing BJ, de Feyter PJ (2000a) Coronary artery fly-through using electron beam computed tomography. Circulation 102: E6 - E10

    Article  Google Scholar 

  • Van Ooijen PMA, Bongaerts AHH, Oudkerk M (2000b) From PACS to internet intranet, information-systems, multimedia and telemedicine. In: Gell G, Holzinger A, Wiltgen M (eds) Proceedings of the 18th international EuroPACS conference, vol 144. Österreichische Computer Gesellschaft, Graz, pp 77–83

    Google Scholar 

  • Van Ooijen PMA, Nieman K, de Feyter PJ, Oudkerk M (2002a) Non-invasive coronary angioscopy using electron beam computed tomography and multi detector computed tomography. AJC 90: 998–1002

    Google Scholar 

  • Van Ooijen PMA, van Geuns RJ, Rensing BJWM, Bongaerts AHH, de Feyter PJ, Oudkerk M (2002b) Non-invasive coronary imaging using electron beam CT–surface rendering versus volume rendering. AJR 180: 223–226

    Google Scholar 

  • Van Ooijen PM, Ho KY, Dorgelo J, Oudkerk M (2003) Coronary artery imaging with multidetector CT: visualization issues. Radiographics 23: e16

    Google Scholar 

  • Verdonck B (1996) Blood vessel segmentation, quantification and visualization for 3D MR and spiral CT angiography. L’Ecole Nationale Superieure des Telecommunications

    Google Scholar 

  • Wahle A, Wellnhofer E, Mugaragu I, Sauer HU, Oswald H, Fleck E (1995) Assessment of diffuse coronary artery disease by quantitative analysis of coronary morphology based upon 3D reconstruction from biplane angiograms. IEEE Trans Med Imaging 14: 230–241

    Article  Google Scholar 

  • Watt A (1993) 3D computer graphics. Addison-Wesley, Reading, Massachusetts

    Google Scholar 

  • Wentzel JJ, Whelan DM, van der Giessen W], van Beusekom HM, Andhyiswara I, Serruys PW, Slager CJ, Krams R (2000) Coronary stent implantation changes 3D vessel geometry and 3D shear stress distribution. J Biomech 33: 1287–1295

    Article  Google Scholar 

  • Wentzel JJ, Krams R, Schuurbiers JC, Oomen JA, Kloet J, van der Giessen WJ, Serruys PW, Slager CJ (2001) Relationship between neointimal thickness and shear stress after Wallstent implantation in human coronary arteries. Circulation 103: 1740–1745

    Article  Google Scholar 

  • Wiese TH, Rogalla P (2001) Virtual endoscopy of the vessels. In: Rogalla P, Terwisscha van Scheltinga J, Hamm B (eds) Virtual endoscopy and related 3D techniques. Springer, Berlin Heideberg New York

    Google Scholar 

  • Wollschläger H, Lee P,Zeiher A, Solzbach U, Bonzel T, Just H (1986) Mathematical tools for spatial computations with biplane isocentric X-ray equipment. Biomed Tech (Berl) 31: 101

    Article  Google Scholar 

  • Zuiderveld KJ (1995) Visualization of multimodality medical volume data using object-oriented methods. Universiteit Utrecht, The Netherlands

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van Ooijen, P.M.A. et al. (2004). Multi-Dimensional Computed Coronary Visualization. In: Oudkerk, M. (eds) Coronary Radiology. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06419-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06419-1_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-06421-4

  • Online ISBN: 978-3-662-06419-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics