Skip to main content

Validation of the Detection and Quantification of Coronary Calcification

  • Chapter
Coronary Radiology

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 156 Accesses

Abstract

X-ray computed tomography (CT) remains the only in vivo method for the quantification of coronary calcifications (Wexler et al. 1996). To date, a whole number of different CT techniques for the quantification of coronary calcification has been described (Table 4.4.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Achenbach S, Ropers D, Mohlenkamp S et al (2001) Variability of repeated coronary artery calcium measurements by electron beam tomography. Am J Cardiol 87:210–213, A218

    Google Scholar 

  • Agatston AS, Janowitz WR, Hildner FJ et al (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15: 827–832

    Article  PubMed  CAS  Google Scholar 

  • Becker CR, Kleffel T, Crispin A et al (2001) Coronary artery calcium measurement: agreement of multirow detector and electron beam ct. AJR Am J Roentgenol 176: 1295–1298

    Article  PubMed  CAS  Google Scholar 

  • Bielak LF, Kaufmann RB, Moll PP et al (1994) Small lesions in the heart identified at electron beam ct: calcification or noise? Radiology 192: 631–636

    PubMed  CAS  Google Scholar 

  • Bielak LF, Sheedy PF, Peyser PA (2001) Coronary artery calcification measured at electron-beam CT: agreement in dual scan runs and change over time. Radiology 218: 224–229

    PubMed  CAS  Google Scholar 

  • Budoff MJ, Mao S, Zalace CP et al (2001) Comparison of spiral and electron beam tomography in the evaluation of coronary calcification in asymptomatic persons. Int J Cardiol 77: 181–188

    Article  PubMed  CAS  Google Scholar 

  • Callister TQ,Cooil B,Raya SP et al (1998a) Coronary artery disease: improved reproducibility of calcium scoring with an electron-beam ct volumetric method. Radiology 208: 807–814

    Google Scholar 

  • Callister TQ, Raggi P, Cooil B et al (1998b) Effect of hmg-coa reductase inhibitors on coronary artery disease as assessed by electron-beam computed tomography. N Engl J Med 339: 1972–1978

    Article  PubMed  CAS  Google Scholar 

  • Carr JJ, Crouse JR 3rd, Goff DC Jr et al (2000) Evaluation of subsecond gated helical ct for quantification of coronary artery calcium and comparison with electron beam ct. Am J Roentgenol 174: 915–921

    Article  CAS  Google Scholar 

  • Detrano R, Kang X, Mahaisavariya P et al (1994) Accuracy of quantifying coronary hydroxyapatite with electron beam tomography. Invest Radiol 29: 733–738

    Article  PubMed  CAS  Google Scholar 

  • Detrano R, Tang W, Kang X et al (1995) Accurate coronary calcium phosphate mass measurements from electron beam computed tomograms. Am J Card Imaging 9: 167–173

    PubMed  CAS  Google Scholar 

  • Dorland’s (1988) Illustrated medical dictionary, 27th edn. Saunders, Philadelphia

    Google Scholar 

  • Erbel R, Moshage W (1999) Consensus protocol for the acquisition and interpretation of coronary calcium studies by electron beam CT in Germany. Z Kardiol 88: 459–465

    Google Scholar 

  • Goldin JG, Yoon HC, Greaser LE et al (2001) Spiral versus electron-beam CT for coronary artery calcium scoring. Radiology 221: 213–221

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann RB, Sheedy PF, Breen JF et al (1994) Detection of heart calcification with electron beam ct: Interobserver and intraobserver reliability for scoring quantification. Radiology 190: 347–352

    Google Scholar 

  • Knollmann FD, Halfmann R, Regn J et al (1999) Motion artifacts in cardiac CT. The Novacor left ventricular assist

    Google Scholar 

  • device and its implications for clinical imaging. Acta Radiol 40:569–577

    Google Scholar 

  • Knollmann FD, Bocksch W, Spiegelsberger S et al (2000) Electron-beam computed tomography in the assessment of coronary artery disease after heart transplantation. Circulation 101: 2078–2082

    Article  PubMed  CAS  Google Scholar 

  • Mao S, Bakhsheshi H, Lu B et al (2001) Effect of electrocardiogram triggering on reproducibility of coronary artery calcium scoring. Radiology 220: 707–711

    Article  PubMed  CAS  Google Scholar 

  • Mautner GC, Mautner SL, Froehlich J et al (1994) Coronary artery calcification: Assessment with electron beam ct and histomorphometric correlation. Radiology 192: 619–623

    Google Scholar 

  • Mautner SL, Mautner GC, Froehlich J et al (1994) Coronary artery disease: prediction with in vitro electron beam CT. Radiology 192: 625–630

    PubMed  CAS  Google Scholar 

  • Rumberger JA, Simons DB, Fitzpatrick LA et al (1995) Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area. A histopathologic correlative study. Circulation 92: 2157–2162

    Google Scholar 

  • Shemesh J, Fisman EZ, Tenenbaum A et al (1997a) Coronary artery calcification in women with syndrome X: usefulness of double-helical CT for detection. Radiology 205: 697–700

    PubMed  CAS  Google Scholar 

  • Shemesh J, Tenenbaum A, Kopecky KK et al (1997b) Coronary calcium measurements by double helical computed tomography. Using the average instead of peak density algorithm improves reproducibility. Invest Radiol 32: 503–506

    Google Scholar 

  • Simons DB, Schwartz RS, Edwards WD et al (1992) Noninvasive definition of anatomic coronary artery disease by ultrafast computed tomographic scanning: a quantitative pathologic comparison study. J Am Coll Cardiol 20: 1118–1126

    Article  PubMed  CAS  Google Scholar 

  • Stanford W (1999) Why not optimism? (letter) Radiology 211: 287

    CAS  Google Scholar 

  • Sutton-Tyrrell K, Kuller LH, Edmundowicz D et al (2001) Usefulness of electron beam tomography to detect progression of coronary and aortic calcium in middle-aged women. Am J Cardiol 87: 560–564

    Article  PubMed  CAS  Google Scholar 

  • Ulzheimer S, Kalender WA (2000) Guidelines for the use of the anthropomorphic Cardio CT phantom with calibration insert for calcium scoring. Institute of Medical Physics, University of Erlangen, Erlangen, Germany

    Google Scholar 

  • Webster’s (1997) New world college dictionary, 3rd edn. Macmillan, New York

    Google Scholar 

  • Wexler L, Brundage B, Crouse J et al (1996) Coronary artery calcification: pathophysiology, epidemiology, imaging methods, and clinical implications. AHA scientific statement. Circulation 94: 1175–1192

    Google Scholar 

  • Yoon HC, Goldin JG, Greaser LE 3rd et al (2000) Interscan variation in coronary artery calcium quantification in a large asymptomatic patient population. Am J Roentgenol 174: 803–809

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Knollmann, F.D., Vliegenthart, R. (2004). Validation of the Detection and Quantification of Coronary Calcification. In: Oudkerk, M. (eds) Coronary Radiology. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06419-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06419-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-06421-4

  • Online ISBN: 978-3-662-06419-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics