Skip to main content

Multi-Dimensional Computed Cardiac Visualization

  • Chapter
Coronary Radiology

Abstract

Contemporary medical imaging modalities such as magnetic resonance imaging (MRI), electron-beam computed tomography (EBCT), and multi-detector computed tomography (MDCT) provide the clinician with a wealth of information. To be able to evaluate and diagnose the (projection and volumetric) data from modern non-invasive and invasive imaging modalities, new visualization techniques are increasingly used. These techniques have been described frequently both for coronary artery imaging (Nakanishi et al. 1997; Chen and Carroll 1998; van Ooijen et al. 1997, 2003a,b; Lawler et al 2005), as well as for other applications in medicine (Rankin 1999; Kirchgeorg and Prokop 1998; Calhoun et al. 1999; Dalrymple et al. 2005; Fishman et al. 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abdala N, Achenbach S, Ropers D, Anders K, Ropers U, Bautz W et al. (2006) Syngo circulation the next generation. Somatom Sessions [18], 8–9. Siemens AG, Medical Solutions, Forchheim

    Google Scholar 

  • Achenbach S, Moshage W, Ropers D, Bachmann K (1998) Curved multiplanar reconstructions for the evaluation of contrast-enhanced electron beam CT of the coronary arteries [see comments]. AJR Am J Roentgenol 170:895–899

    CAS  PubMed  Google Scholar 

  • Achenbach S, Ropers D, Regenfus M, Muschiol G, Daniel WG, Moshage W (2000) Contrast enhanced electron beam computed tomography to analyse the coronary arteries is patients after acute myocardial infarction. Heart 84:489–493

    Article  CAS  PubMed  Google Scholar 

  • Addis KA, Hopper KD, Iyriboz TA, Liu Y, Wise SW, Kasales CJ, Blebea JS, Mauger DT (2001) CT angiography: in vitro comparison of five reconstruction methods. AJR Am J Roentgenol 177:1771–1776

    Google Scholar 

  • Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15:827–832

    Article  CAS  PubMed  Google Scholar 

  • Anderson CM, Saloner D, Tsuruda JS, Shapeero LG, Lee RE (1990) Artifacts in maximum-intensity-projection display of MR angiograms. AJR Am J Roentgenol 154:623–629

    CAS  PubMed  Google Scholar 

  • Bazak N, Stamm G, Caldarone F, Lotz J, Leppert A, Galanski M (2000) PACS Workstations 2000: evaluation, usability and performance. Gell G, Holzinger A, and Wiltgen M 144, 133–142. Graz, Ă–sterreichische Computer Gesellschaft. Proceedings of the 18th International EuroPACS Conference

    Google Scholar 

  • Beliveau P, Setser R, Cheriet F, O’Donnell T (2007) Patientspecific coronary territory maps. Proceedings of SPIE, SPIE, 6511

    Google Scholar 

  • Bittl JA, Levin DC (1997) Coronary arteriography. In: Braunwald E (ed) Heart disease — a textbook of cardiovascular medicine, vol 1, chap 8. Saunders, Philadelphia, pp 240–272

    Google Scholar 

  • Bornik A, Reitinger B, Beichel R (2005) Reconstruction and representation of tubular structures using simplex meshes. Proc of WSCG 2005, Short Papers 61–65

    Google Scholar 

  • Boskamp T, Hahn H, Hindennach M, Oeltze S, Preim B, Zidowitz S, Peitgen HO (2005) Geometrical and structural analysis of vessel systems in 3D medical image datasets. In: Leondes CT (ed) Medical imaging systems. World Scientific, Singapore, October

    Google Scholar 

  • Brandon D, Lovis C, GeissbĂ¼hler A, VallĂ©e J-P (2005) Enterprise-wide PACS: beyond radiology, and architecture to manage all medical images. Acad Radiol 12:1000–1009

    Article  Google Scholar 

  • Breeuwer M, Paetsch I, Nagel E, Muthupillai R, Flamm S, Plein S et al. (2003) The detection of normal, ischemic and infarcted myocardial tissue using MRI. International Congress Series 1256:1153–1158. CARS

    Article  Google Scholar 

  • Brennecke R, Kerensky R (1997) Image compression. In: A Primer; Kennedy TE, Nissen SE, Simon R, Thomas JD, Tilkemeier PL (eds) Digital cardiac imaging in the 21st Century. The Cardiac and Vascular Information Working Group, Bethesda, Maryland

    Google Scholar 

  • Bruski GB, Cutler S (2003) Cardiac PACS: strategies for planning, integration and vendor selection. J Cardiovasc Manag 14:22–26

    PubMed  Google Scholar 

  • Buecker A, Katoh M, Krombach GA, Spuentrup E, Bruners P, Gunther RW et al. (2005) A feasibility study of contrast enhancement of acute myocardial infarction in multislice computed tomography: comparison with magnetic resonance imaging and gross morphology in pigs. Invest Radiol 40:700–704

    Article  PubMed  Google Scholar 

  • Calhoun PS, Kuszyk BS, Heath DG, Carley JC, Fishman EK (1999) Three-dimensional volume rendering of spiral CT data: theory and method. Radiographics 19:745–764

    CAS  PubMed  Google Scholar 

  • Callister TQ, Cooil B, Raya SP et al. (1998) Coronary artery disease: improved reproducibility of calcium scoring with an electron-beam CT volumetric method. Radiology 208:807–14

    CAS  PubMed  Google Scholar 

  • Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK et al. (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105:539–542

    Article  PubMed  Google Scholar 

  • Chabbert V, Carrie D, Bennaceur M, Maupas E, Lauwers V, Mhem M, Lhermusier T, Elbaz M, Joffre F, Rousseau H, Puel J (2007) Evaluation of in-stent restenosis in proximal coronary arteries with multidetector computed tomography (MDCT). European Radiology 17:1452–1463

    Article  CAS  PubMed  Google Scholar 

  • Chen SJ, Carroll JD (1998) 3D Coronary angiography: improving visualization strategy for coronary interventions. In: Reiber JHC, Wall E (eds) What’s new in cardiovascular imaging? Kluwer Academic Publishers, Dordrecht, pp 61–78

    Google Scholar 

  • Dalrymple NC, Prasad SR, Freckleton MW, Chintapalli KN (2005) Introduction to the language of three-dimensional imaging with multidetector CT. Radiographics 25:1409–1428

    Article  PubMed  Google Scholar 

  • de Feyter PJ, Krestin GP (2005) Computed tomography of the coronary arteries. Taylor & Francis, London, ISBN 1-84184-439-X

    Google Scholar 

  • Drebin RA, Carpenter L, Hanrahan P (1988) Volume rendering. Proceedings Siggraph’ 88, Computer Graphics, 22:65–74

    Article  Google Scholar 

  • Ebert DS, Heath DG, Kuszyk BS, Edwards L, Shaw CD, Kukla J, Bedwell T, Fishman EK (1998) Evaluating the potential and problems of three-dimensional computed tomography measurements of arterial stenosis. J Digit Imaging 11:151–157

    Article  CAS  PubMed  Google Scholar 

  • Ehricke HH, Donner K, Koller W, Strasser W (1994) Visualization of vasculature from volume data. Computers Graphics 18:395–406

    Article  Google Scholar 

  • Elvins TT (1992) A survey of algorithms for volume visualization. Computer Graphics 26:194–201

    Article  Google Scholar 

  • Felkel P, Fuhrmann A, Kanitsar A, Wegenkittl R (2002) Surface reconstruction of the branching vessels for augmented reality aided surgery. BIOSIGNAL 16:252–254

    Google Scholar 

  • Ferencik M, Ropers D, Abbara S, Cury RC, Hoffmann U, Nieman K, Brady TJ, Moselewski F, Daniel WG, Achenbach S (2007) Diagnostic accuracy of image postprocessing methods for the detection of coronary artery stenoses by using multidetector CT. Radiology 243:696–702

    Article  PubMed  Google Scholar 

  • Fishman EK, Magid D, Ney DR, Chaney EL, Pizer SM, Rosenman JG, Levin DN, Vannier MW, Kuhlman JE, Robertson DD (1991) Three-dimensional imaging. Radiology 181:321-337 [Published erratum appears in Radiology 182:899, 1992]

    Google Scholar 

  • Fishman EK, Ney DR (1993) Advanced computer applications in radiology: clinical applications. Radiographics 13:463–475

    CAS  PubMed  Google Scholar 

  • Fishman EK, Ney DR, Heath DG, Corl FM, Horton KM, Johnson PT (2006) Volume rendering versus maximum intensity projection in CT angiography: what works best, when, and why? Radiographics 26:905–922

    Article  PubMed  Google Scholar 

  • Funabashi N, Kobayashi Y, Rubin GD (2001a) Utility of three-dimensional volume rendering images using EBT to evaluate possible causes of ischemia from an anomalous origin of the RCA from the left sinus of valseva. Jpn Circ J 65:575–578

    Article  CAS  PubMed  Google Scholar 

  • Funabashi N, Kobayashi Y, Rubin GD (2001b) Three-dimensional images of coronary arteries after heart transplantation using electron-beam computed tomography data with volume rendering. Circulation 103:e25–e26

    CAS  PubMed  Google Scholar 

  • George RT, Silva C, Cordeiro MA, DiPaula A, Thompson DR, McCarthy WF et al. (2006) Multidetector computed tomography myocardial perfusion imaging during adenosine stress. J Am Coll Cardiol 48:153–160

    Article  PubMed  Google Scholar 

  • Gerig G, Koller T, SzĂ©kely G, BrechbĂ¼hler C, KĂ¼bler O (1993) Symbolic description of 3-D structures applied to cerebral vessel tree obtained from MR angiography volume data. Proceedings of the 13th International Conference on Information Processing in Medical Imaging, pp 94–111

    Google Scholar 

  • Gibson S (1998) Constrained elastic surface nets: generating smooth surfaces from binary segmented data. Proc MICCAI 98:888–898

    Google Scholar 

  • Goedhart B, Reiber JHC (1998) How will DICOM change the cardiac catherisation environment? Cardiologie 5:148–153

    Google Scholar 

  • Groen JM, Greuter MJ, van Ooijen PM, Willems TP, Oudkerk M (2006) Initial results on visualization of coronary artery stents at multiple heart rates on a moving heart phantom using 64-MDCT. J Comput Assist Tomogr 30:812–817

    Article  PubMed  Google Scholar 

  • Groen JM, Greuter MJ, van Ooijen PM, Oudkerk M (2007) A new approach to the assessment of lumen visibility of coronary artery stent at various heart rates using 64-slice MDCT. Eur Radiol 17:1879–1884. Epub Feb 16

    Article  CAS  PubMed  Google Scholar 

  • Hahn HK, Preim B, Selle D, Peitgen HO (2001) Visualization and interaction techniques for the exploration of vascular structures. Visualization, VIS’01. Proceedings, pp 395–402

    Google Scholar 

  • Hany TF, Schmidt M, Davis CP, Gohde SC, Debatin JF (1998) Diagnostic impact of four postprocessing techniques in evaluating contrast-enhanced three-dimensional MR angiography. AJR Am J Roentgenol 170:907–912

    CAS  PubMed  Google Scholar 

  • He S, Dai R, Lu B, Cao C, Bai H, Jing B (2001) Medial axis reformation: a new visualization method for CT angiography. Acad Radiol 8:726–733

    Article  CAS  PubMed  Google Scholar 

  • Heath DG, Soyer PA, Kuszyk BS, Bliss DF, Calhoun PS, Bluemke DA, Choti MA, Fishman EK (1995) Three-dimensional spiral CT during arterial portography: comparison of three rendering techniques. Radiographics 15:1001–1011

    CAS  PubMed  Google Scholar 

  • Hein PA, Rogalla P, Mews J (2006) Analysis of a cardiac MSCT study employing the sure plaque software. Visions Magazine 10[13]:38-42. TOSHIBA Medical Systems

    Google Scholar 

  • Hennemuth A, Bock S, Boskamp T, Fritz D, KĂ¼hnel C, Rinck D, Scheuering M, Peitgen HO (2005) One-click coronary tree segmentation in CT angiographic images. Computer Assisted Radiology and Surgery. Elsevier, pp 317–321

    Google Scholar 

  • Hennemuth A, Behrens S, KĂ¼hnel C, Oeltze S, Konrad O, Peitgen H-O (2007a) Novel methods for parameter based analysis of myocardial tissue in MR-Images. SPIE Press, Bellingham, WA, pp 65111N–1–65111N–9

    Google Scholar 

  • Hennemuth A, Seeger A, Kuehnel C, Boskamp T, Miller S, Konrad O et al. (2007b) A software tool for the combined analysis of angiographic and perfusion MRI datasets for an optimized diagnosis of coronary artery disease. Proc Intl Soc Mag Reson Med 15. MIRA Digital Publishing, p 3616

    Google Scholar 

  • Hindel R (1994) Implementation of the DICOM 3.0 standard — a pragmatic handbook. Radiological Society of North America, Oak Brook, IL

    Google Scholar 

  • Hoffmann R, Mintz GS (2000) Coronary in-stent restenosis — predictors, treatment and prevention. Eur Heart J 21:1739–1749

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann U, Butler J (2005) Noninvasive detection of coronary atherosclerotic plaque by multidetector row computed tomography. Int J Obes 29[Suppl 2]:s46–53

    Article  Google Scholar 

  • Hoffmann U, Siebert U, Bull-Stewart A et al. (2006) Evidence for lower variability of coronary artery calcium mineral mass measurements by multi-detector computed tomography in a community-based cohort — consequences for progression studies. Eur J Radiol Mar 57:396–402

    Article  Google Scholar 

  • Höhne KH, Bomans M, Pommert A, Tiede U (1990) Voxel based volume visualization techniques. Levoy M ACM Siggraph Course Notes 11 [Volume Visualization Algorithms and Architecture], pp 66–83

    Google Scholar 

  • Honea R, McCluggage CW, Parker B, O’Neall D, Shook K (1998) An evaluation of commercial PC-based DICOM image viewers. J Digit Imaging 11:151–155

    Article  CAS  PubMed  Google Scholar 

  • Isgum I, Rutten A, Prokop M, van Ginneken B (2007) Detection of coronary calcifications from computed tomography scans for automated risk assessment of coronary artery disease. Medical Physics 34:1450–1461

    Article  PubMed  Google Scholar 

  • Johnson PT, Heath DG, Kuszyk BS, Fishman EK (1997) CT angiography: thoracic vascular imaging with interactive volume rendering technique. J Comput Assist Tomogr 21:110–114

    Article  CAS  PubMed  Google Scholar 

  • Kefer JM, Coche E, Vanoverschelde J-LJ, Gerber B (2007) Diagnostic accuracy of 16-slice multidetector-row CT for detection of in-stent restenosis vs detection of stenosis. European Radiology 17:87–96

    Article  PubMed  Google Scholar 

  • Kim RJ, Hillenbrand HB (2000) Evaluation of myocardial viability by MRI. Herz 25:417–430

    Article  CAS  PubMed  Google Scholar 

  • Kirchgeorg MA, Prokop M (1998) Increasing spiral CT benefits with postprocessing applications. Eur J Radiol 28:39–54

    Article  CAS  PubMed  Google Scholar 

  • Klessen C, Post F, Meyer J, Thelen M, Kreitner KF (2000) Depiction of anomalous coronary vessels and their relation to the great arteries by magnetic resonance angiography. European Radiology 10:1855–1857

    Article  CAS  PubMed  Google Scholar 

  • Knez A, Becker A, Becker C, Leber A, Reiser M, Steinbeck G (2002) Determination of coronary calcium with multi-slice spiral computed tomography: a comparative study with electron-beam CT. Int J Cardiovasc Imaging 18:295–303

    Article  PubMed  Google Scholar 

  • Kolipaka A, Chatzimavroudis GP, White RD, O’donnell TP, Setser RM (2005) Segmentation of non-viable myocardium in delayed enhancement magnetic resonance images. Int J Cardiovasc Imaging (formerly Cardiac Imaging) 21:303–311

    Article  Google Scholar 

  • KĂ¼hnel C, Hennemuth A, Boskamp T, Oeltze S, Bock S, Krass S et al. (2006) New software assistants for cardiovascular diagnosis. Köllen Druck+Verlag GmbH, Bonn, pp 491–498

    Google Scholar 

  • Kuszyk BS, Heath DG, Ney DR, Bluemke DA, Urban BA, Chambers TP, Fishman EK (1995) CT angiography with volume rendering: imaging findings. AJR Am J Roentgenol 165:445–448

    CAS  PubMed  Google Scholar 

  • Langenhuysen RGA, Philipse PH (2001) Multiple archive storage server — white paper, September 26. Rogan Medical Systems

    Google Scholar 

  • Lawler LP, Pannu HK, Fishman EK (2005) MDCT evaluation of the coronary arteries 2004: how we do it — data acquisition, postprocessing, display, and interpretation. AJR Am J Roentgenol 184:1402–1412

    Google Scholar 

  • Leber AW, Knez A, White CW, Becker A, Ziegler F von, Muehling O, Becker C, Reiser M, Steinbeck G, Boekstegers P (2003) Composition of coronary atherosclerotic plaques in patients with acute myocardial infarction and stable angina pectoris determined by contrast-enhanced multislice computed tomography. Am J Cardiol 91:714–718

    Article  PubMed  Google Scholar 

  • Leber AW, Knez A, von Ziegler F, Sirol M, Nikolaou K, Ohnesorge B, Fayad ZA, Becker CR, Reiser M, Steinbeck G, Boekstegers P (2006) Accuracy of 64-slice computed tomography to classify and quantify plaque volumes in the proximal coronary system: a comparative study using intravascular ultrasound. J Am Coll Cardiol 47:672–677

    Article  PubMed  Google Scholar 

  • Leclerc X, Godefroy O, Pruvo JP, Leys D (1995) Computed tomographic angiography for the evaluation of carotid artery stenosis. Stroke 26:1577–1581

    CAS  PubMed  Google Scholar 

  • Ligabue G, Fiocchi F, Ferraresi S, Rossi R, Modena MG, Ratti C, Torricelli P, Romagnoli R (2007) Does 16-slice multidetector computed tomography improve stent patency and in-stent restenosis evaluation? J Cardiov Med 8:438–444

    Google Scholar 

  • Liu Y, Hopper KD, Mauger DT, Addis KA (2000) CT angiographic measurement of the carotid artery: optimizing visualization by manipulating window and level settings and contrast material attenuation. Radiology 217:494–500

    CAS  PubMed  Google Scholar 

  • Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. Proceedings of the 14th annual conference on computer graphics and interactive techniques, pp 163–169

    Google Scholar 

  • Lu B, Dai RP, Jiang SL et al. (2001) Effects of window and threshold levels on the accuracy of 3D rendering techniques in coronary artery EBCT angiography. Acad Radiol 8:754–761

    Article  CAS  PubMed  Google Scholar 

  • Magnusson M, Lenz R, Danielsson PE (1991) Evaluation of methods for shaded surface display of CT volumes. Comput Med Imaging Graph 15:247–256

    Article  CAS  PubMed  Google Scholar 

  • Mahnken AH, Buecker A, Wildberger JE, Ruebben A, Stanzel S, Vogt F, Gunther RW, Blindt R (2004) Coronary artery stents in multislice computed tomography: in vitro artifact evaluation. Invest Radiol 39:27–33

    Article  PubMed  Google Scholar 

  • Maintz D, Juergens KU, Wichter T, Grude M, Heindel W, Fischbach R (2003) Imaging of coronary artery stents using multislice computed tomography; in vitro evaluation. European Radiology 13:830–835

    PubMed  Google Scholar 

  • Maintz D, Seifarth H, Raupach R, Flohr T, Rink M, Sommer T, Ă–zgĂ¼n M, Heindel W, Fischbach R (2006) 64-Slice multidetector coronary CT angiography: in vitro evaluation of 68 different stents. European Radiology 16:818–826

    Article  PubMed  Google Scholar 

  • Marks MP, Napel S, Jordan JE, Enzmann DR (1993) Diagnosis of carotid artery disease: preliminary experience with maximum-intensity-projection spiral CT angiography. AJR Am J Roentgenol 160:1267–1271

    CAS  PubMed  Google Scholar 

  • Meinhardt G (2006) Cardiology requirements for PACS — defining future needs. Imaging Management 6:26–27

    Google Scholar 

  • Meyers SP, Talagala SL, Totterman S, Azodo MV, Kwok E, Shapiro L, Shapiro R, Pabico RC, Applegate GR (1995) Evaluation of the renal arteries in kidney donors: value of three-dimensional phase-contrast MR angiography with maximum-intensity-projection or surface rendering. AJR Am J Roentgenol 164:117–121

    CAS  PubMed  Google Scholar 

  • Murakami T, Kashiwagi T, Nakamura H, Tsuda K, Azuma M, Tomoda K, Hori S, Kozuka T (1993) Display of MR angiograms: maximum intensity projection versus threedimensional rendering. Eur J Radiol 17:95–100

    Article  CAS  PubMed  Google Scholar 

  • Nagel E, Klein C, Paetsch I, Hettwer S, Schnackenburg B, Wegscheider K et al. (2003) Magnetic resonance perfusion measurements for the noninvasive detection of coronary artery disease. Circulation 108:432

    Article  PubMed  Google Scholar 

  • Nakanishi T, Ito K, Imazu M, Yamakido M (1997) Evaluation of coronary artery stenoses using electron-beam CT and multiplanar reformation. J Comput Assist Tomogr 21:121–127

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi T, Kohata M, Miyasaka K, Fukuoka H, Ito K, Imazu M (2000) Virtual endoscopy of coronary arteries using contrast-enhanced ECG-triggered electron beam CT data sets. AJR Am J Roentgenol 174:1345–1347

    CAS  PubMed  Google Scholar 

  • Nakanishi T, Kayashima Y, Inoue R, Sumii K, Gomyo Y (2005) Pitfalls in 16-detector row CT of the coronary arteries. Radiographics 25:425–440

    Article  PubMed  Google Scholar 

  • Namdar M, Hany TF, Koepfli P, Siegrist PT, Burger C, Wyss CA et al. (2005) Integrated PET/CT for the assessment of coronary artery disease: a feasibility study. J Nucl Med 46:930–935

    PubMed  Google Scholar 

  • Napel S, Marks MP, Rubin GD, Dake MD, McDonnell CH, Song SM, Enzmann DR, Jeffrey RB Jr (1992) CT angiography with spiral CT and maximum intensity projection. Radiology 185:607–610

    CAS  PubMed  Google Scholar 

  • Napel S, Rubin GD, Jeffrey RB Jr (1993) STS-MIP: a new reconstruction technique for CT of the chest. J Comput Assist Tomogr 17:832–838

    Article  CAS  PubMed  Google Scholar 

  • Ney DR, Fishman EK, Magid D (1990a) Three-dimensional imaging of computed tomography: techniques and applications. Ezquerra NF 498–506. Los Alamitos, California, IEEE Computer Society Press. Proceedings of the First Conference on Visualization in Biomedical Computing

    Google Scholar 

  • Ney DR, Fishman EK, Magid D Drebin RA (1990b) Volumetric rendering of computed tomography data: principles and techniques. IEEE Computer Graphics and Applications 9:24–32

    Article  Google Scholar 

  • Ochi T, Shimizu K, Yasuhara Y, Shigesawa T, Mochizuki T, Ikezoe J (1999) Curved planar reformatted CT angiography: usefulness for the evaluation of aneurysms at the carotid siphon. AJNR Am J Neuroradiol 20:1025–1030

    CAS  PubMed  Google Scholar 

  • Oeltze S, Preim B (2004) Visualization of anatomic tree structures with convolution surfaces. Proceedings Joint IEEE/EG Symposium on Visualization, pp 311–320

    Google Scholar 

  • Oeltze S, Grothues F, Hennemuth A, Preim B (2006) Integrated visualization of morphologic and perfusion data for the analysis of coronary artery disease. Euro Vis, pp 131–138

    Google Scholar 

  • Ohtake Y, Belyaev A, Alexa M, Turk G, Seidel HP (2003) Multi-level partition of unity implicits. ACM Transactions on Graphics (TOG) 22:463–470

    Article  Google Scholar 

  • Pelanek GA (1997) A DICOM cardiology exchange. In: Primer A, Kennedy TE, Nissen SE, Simon R, Thomas JD, Tilkemeier PL (eds) Digital cardiac imaging in the 21st Century. The Cardiac and Vascular Information Working Group, Bethesda, Maryland

    Google Scholar 

  • Pollak T, Heuser H, Niederlag G, BrĂ¼ggenwerth G, Kaulfuss K (2000) Evaluation of 7 PC-based diagnostic workstations. Gell G, Holzinger A, and Wiltgen M 144, 114–125. Graz, Ă–sterreichische Computer Gesellschaft. Proceedings of the 18th International EuroPACS Conference

    Google Scholar 

  • Prokop M, Shin HO, Schanz A, Schaefer-Prokop CM (1997) Use of maximum intensity projections in CT angiography: a basic review. Radiographics 17:433–451

    CAS  PubMed  Google Scholar 

  • Rankin SC (1998) Spiral CT: vascular applications. Eur J Radiol 28:18–29

    Article  CAS  PubMed  Google Scholar 

  • Rankin SC (1999) CT Angiography. Eur Radiol 9:297–310

    Article  CAS  PubMed  Google Scholar 

  • Reimann AJ, Rinck D, Birinci-Aydogan A, Scheuering M, Burgstahler C, Schroeder S, Brodoefel H, Tsiflikas I, Herberts T, Flohr T, Claussen CD, Kopp AF, Heuschmid M (2007) Dual-source computed tomography: advances of improved temporal resolution in coronary plaque imaging. Investigative Radiology 42:196–203

    Article  PubMed  Google Scholar 

  • Rensing BJ, Bongaerts AH, van Geuns RJ, van Ooijen PM, Oudkerk M, de Feyter PJ (1999a) Intravenous coronary angiography using electron beam computed tomography. Prog Cardiovasc Dis 42:139–148

    Article  CAS  PubMed  Google Scholar 

  • Rensing BJ, Bongaerts AH, van Geuns RJ, van Ooijen PM, Oudkerk M, de Feyter PJ (1999b) In vivo assessment of three dimensional coronary anatomy using electron beam computed tomography after intravenous contrast administration. Heart 82:523–525

    CAS  PubMed  Google Scholar 

  • Ropers D, Baum U, Pohle K, Anders K, Ulzheimer S, Ohnesorge B, Schlundt C, Bautz W, Daniel W, Achenbach S (2003) Detection of coronary artery stenoses with thinslice multi-detector row spiral computed tomography and multiplanar reconstruction. Circulation 107:664–666

    Article  PubMed  Google Scholar 

  • Rubin GD (1994) Three-dimensional helical CT angiography. Tradio Graphics 14:905–912

    CAS  Google Scholar 

  • Rubin GD, Dake MD, Napel S, Jeffrey RB Jr, McDonnell CH, Sommer FG, Wexler L, Williams DM (1994) Spiral CT of renal artery stenosis: comparison of three-dimensional rendering techniques. Radiology 190:181–189

    CAS  PubMed  Google Scholar 

  • Rubin GD, Dake MD, Semba CP (1995) Current status of three-dimensional spiral CT scanning for imaging the vasculature. Radiol Clin North Am 22:51–70

    Google Scholar 

  • Scheffel H, Alkadhi H, Plass A, Vachenauer R, Desbiolles L, Gaemperli O, Schepis R, Frauenfelder T, Schertler T, Husmann L, Grunenfelder J, Genoni M, Kaufmann PA, Marincek B, Leschka S (2006) Accuracy of dual-source CT coronary angiography: first experience in a high pretest probability population without heart rate control. Eur Radiol 16:1739–1747

    Article  Google Scholar 

  • Schmid M, Achenbach S, Ludwig J, Baum U, Anders K, Pohle K, Daniel WG, Ropers D (2006) Visualization of coronary artery anomalies by contrast-enhanced multi-detector row spiral computed tomography. Int J Cardiol 111:430–435

    Article  PubMed  Google Scholar 

  • Schmidt P (1999) From humble beginnings: the history of cardiac X-ray image management. Medicamundi 43:10–15

    Google Scholar 

  • Schroeder S, Kopp AF, Baumbach A, Meisner C, Kuettner A, Georg C, Ohnesorge B, Herdeg C, Claussen CD, Karsch KR (2001) Noninvasive detection and evaluation of atherosclerotic coronary plaques with multislice computed tomography. J Am Coll Cardiol 37:1430–1435

    Article  CAS  PubMed  Google Scholar 

  • Schroeder S, Kopp AF, Ohnesorge B, Loke-Gie H, Kuettner A, Baumbach A, Herdeg C, Claussen CD, Karsch KR (2002) Virtual coronary angioscopy using multislice computed tomography. Heart 87:205–209

    Article  CAS  PubMed  Google Scholar 

  • Schumann C, Steffen Oeltze, Ragnar Bade, Bernhard Preim (2007) Visualisierung von GefĂ¤ĂŸsystemen mit MPU Implicits. In: Bildverarbeitung fĂ¼r die Medizin, Informatik aktuell

    Google Scholar 

  • Seifarth H, Raupach R, Schaller S, Fallenberg EM, Flohr T, Heindel W, Fischbach R, Maintz D (2005) Assessment of coronary artery stents using 16-slice MDCT angiography: evaluation of a dedicated reconstruction kernel and a noise reduction filter. Eur Radiol 15:721–726

    Article  PubMed  Google Scholar 

  • Selle D, Preim B, Schenk A, Peitgen HO (2002) Analysis of vasculature for liver surgical planning. IEEE Transactions on Medical Imaging, pp 1344–1357

    Google Scholar 

  • Sheth T, Dodd JD, Hoffman U, Abbara S, Finn A, Gold HK, Brady TJ, Cury RC (2007) Coronary stent assessability by 64 slice multi-detector computed tomography. Catheter Cardiovasc Interv 69:933–938

    Article  PubMed  Google Scholar 

  • Sigwart U, Puel J, Mirkovitch V, Joffre F, Kappenberger L (1987) Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. N Engl J Med 316:701–706

    Article  CAS  PubMed  Google Scholar 

  • Soyer P, Heath D, Bluemke DA, Choti MA, Kuhlman JE, Reichle R, Fishman EK (1996) Three-dimensional helical CT of intrahepatic venous structures: comparison of three rendering techniques. J Comput Assist Tomogr 20:122–127

    Article  CAS  PubMed  Google Scholar 

  • Sturm B, Powell KA, Stillman AE (2003) Registration of 3D CT angiography and cardiac MR images in coronary artery disease patients. Int J Cardiovasc Imaging 6:281–293

    Google Scholar 

  • Takahashi M, Ashtari M, Papp Z, Patel M, Goldstein J, Maguire WM, Eacobacci T, Khan A, Herman PG (1997) CT angiography of carotid bifurcation: artifacts and pitfalls in shaded-surface display. AJR Am J Roentgenol 168:813–817

    CAS  PubMed  Google Scholar 

  • Terwisscha van Scheltinga J (2001) Technical background. In: Rogalla P, Terwisscha van Scheltinga J, Hamm B (eds) Virtual endoscopy and related 3D techniques. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Thomas JD, Nissen SE (1996) Digital storage and transmission of cardiovascular images: what are the costs, benefits and timetable for conversion? Heart 76:13–17

    Article  CAS  PubMed  Google Scholar 

  • Traversie E, Tramarin R (2003) Intracoronary imaging with multislice spiral computed tomography. New Engl J Med 348:e5

    Article  Google Scholar 

  • Udupa JK (1999) Three-dimensional visualization and analysis methodologies: a current perspective. Radiographics 19:783–806

    CAS  PubMed  Google Scholar 

  • Udupa JK, Hung H-M (1990) Surface versus volume rendering: a comparative assessment. Ezquerra NF 83-91 Los Alamitos, California, IEEE Computer Society Press. Proceedings of the First Conference on Visualization in Biomedical Computing

    Google Scholar 

  • van der Putten N, Gerritsen M, Dijk WA, den Boer A (1997) HEMA-PACS: een goedkoop PACS voor coronaire angiografie beelden. Klinische fysica 3:21–23 (in Dutch, English abstract available)

    Google Scholar 

  • van Geuns RJ, Wielopolski PA, Rensing BJ, van Ooijen PM, Oudkerk M, de Feyter PJ (1999) Magnetic resonance imaging of the coronary arteries: anatomy of the coronary arteries and veins in three-dimensional imaging. Coron Artery Dis 10:261–267

    PubMed  Google Scholar 

  • van Ooijen PMA, Feyter PJ, Oudkerk M (1997) An introduction to three-dimensional cardiac image rendering and processing. Cardiology 4:312–319

    Google Scholar 

  • van Ooijen PM, Oudkerk M, van Geuns RJ, Rensing BJ, de Feyter PJ (2000a) Coronary artery fly-through using electron beam computed tomography. Circulation 102:E6–10

    PubMed  Google Scholar 

  • van Ooijen PMA, Bongaerts AHH, Oudkerk M (2000b) From PACS to internet/intranet, information-systems, multimedia and telemedicine. Gell G, Holzinger A, and Wiltgen M 144, 77–83. Graz, Ă–sterreichische Computer Gesellschaft. Proceedings of the 18th International EuroPACS Conference

    Google Scholar 

  • van Ooijen PMA, Nieman K, de Feyter PJ, Oudkerk M (2002) Non-invasive coronary angioscopy using electron beam computed tomography and multi detector computed tomography. AJC 90:998–1002

    Article  Google Scholar 

  • van Ooijen PMA, Ho KYAM, Dorgelo J, Oudkerk M (2003a) Coronary artery imaging with multidetector CT: visualization issues. Radiographics 23:e16

    Article  PubMed  Google Scholar 

  • van Ooijen PMA, van Geuns RJ, Rensing B, Bongaerts AH, de Feyter PJ, Oudkerk M (2003b) Noninvasive coronary imaging using electron beam CT: surface rendering versus volume rendering. AJR Am J Roentgenol 180:223–226

    PubMed  Google Scholar 

  • van Ooijen PMA, Dorgelo J, Zijlstra F, Oudkerk M (2004) Detection, visualization and evaluation of anomalous coronary anatomy on 16-slice multidetector-row CT. European Radiology 14:2163–2171

    Article  PubMed  Google Scholar 

  • van Ooijen PM, de Jonge G, Oudkerk M (2007) Coronary flythrough or virtual angioscopy using dual-source MDCT data. Eur Radiol 17:2852–2859

    Article  PubMed  Google Scholar 

  • Verdonck B (1996) Blood vessel segmentation, quantification and visualization for 3D MR and spiral CT angiography. l’Ecole Nationale Superieure des Telecommunication

    Google Scholar 

  • Watt A (1993) 3D computer graphics. Addison-Wesley, Wokingham, UK

    Google Scholar 

  • Wiese TH, Rogalla P (2001) Virtual endoscopy of the vessels. In: P Rogalla, Terwisscha van Scheltinga J, Hamm B (eds) Virtual endoscopy and related 3D techniques. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Zuiderveld KJ (1995) Visualization of multimodality medical volume data using object-oriented methods. Universiteit Utrecht, The Netherlands

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van Ooijen, P.M.A. et al. (2009). Multi-Dimensional Computed Cardiac Visualization. In: Oudkerk, M., Reiser, M.F. (eds) Coronary Radiology. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32984-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-32984-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32983-1

  • Online ISBN: 978-3-540-32984-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics