Skip to main content

Myocardial Perfusion

  • Chapter
Clinical Cardiac MRI

Part of the book series: Medical Radiology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Saadi N, Nagel E, Gross M, et al. (2000a) Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation 101(12):1379–1383

    PubMed  Google Scholar 

  • Al-Saadi N, Nagel E, Gross M, et al. (2000b) Improvement of myocardial perfusion reserve early after coronary intervention: assessment with cardiac magnetic resonance imaging. J Am Coll Cardiol 36(5):1557–1564

    Article  PubMed  Google Scholar 

  • Al-Saadi N, Gross M, Bornstedt A, et al. (2001) Comparison of various parameters for determining an index of myocardial perfusion reserve in detecting coronary stenosis with cardiovascular magnetic resonance tomography. Z Kardiol 90(11):824–834

    Article  PubMed  Google Scholar 

  • Al-Saadi N, Gross M, Paetsch I, et al. E (2002) Dobutamine induced myocardial perfusion reserve index with cardiovascular MR in patients with coronary artery disease. J Cardiovasc Magn Reson 4(4):471–480

    Article  PubMed  Google Scholar 

  • Al-Saadi N, Abdelaty H, Friedrich M (2003a) Magnetic resonance first pass myocardial perfusion: Influence of spatial and temporal coverage on qualitative evaluation (abstract). J Cardiovasc Magn Reson 5:106

    Google Scholar 

  • Al-Saadi N, Abdelaty H, Messroghli D, Friedrich M (2003b) Influence of interslice gap and sample frequency on semiquantitative evaluation of first pass myocardial perfusion with magnetic resonance. J Cardiovasc Magn Reson 5:72–73

    Google Scholar 

  • Al-Saadi N, Abdelaty H, Messroghli D, Friedrich M (2003c) Factors influencing semiquantitative evaluation of magnetic resonance first pass myocardial perfusion (abstract). J Cardiovasc Magn Reson 5:222

    Google Scholar 

  • Al-Saadi N, Wassmuth R, Friedrich M (2003d) Qualitative evaluation of myocardial perfusion for the detection of coronary artery disease. Circulation 108:IV–402

    Google Scholar 

  • Al-Saadi N, Dechend R, Taylor A, Abdel-Aty H, Freidrich M (2003e) Glycoprotein Iib/IIIa antagonist reduces the extent of irreversible microvascular injury in patients with reperfused acute myocardial infarction. Circulation 108:IV–580

    Google Scholar 

  • Anderson CM, Brown JJ (1993) Cardiovascular magnetic resonance imaging: evaluation of myocardial perfusion. Coron Artery Dis 4:354–360

    PubMed  Google Scholar 

  • Araujo LI, Lammertsma AA, Rhodes CG, et al. (1991) Non-invasive quantification of regional myocardial blood flow in coronary artery disease with oxygen 15 labeled carbon dioxide inhalation and positron emission tomography. Circulation 83:875–885

    PubMed  Google Scholar 

  • Arteaga C, Canet E, Ovize M, Janier M, Revel D (1994) Myocardial perfusion assessed by subsecond magnetic resonance imaging with a paramagnetic macromolecular contrast agent. Invest Radiol 29:54–57

    PubMed  Google Scholar 

  • Atalay MK, Forder JR, Chacko VP, Kawamoto S, Zerhouni EA (1993) Oxygenation in the rabbit myocardium: assessment with susceptibility-dependent MR imaging. Radiology 189:759–764

    PubMed  Google Scholar 

  • Atkinson DJ, Burstein D, Edelman RR (1990) First-pass cardiac perfusion: evaluation with ultrafast MR imaging. Radiology 174:757–762

    PubMed  Google Scholar 

  • Bacharach SL, Bax JJ, Case J, et al. (2004) PET myocardial glucose metabolism and perfusion imaging: part 1 — guidelines for patient preparation and data acquisition. J Nucl Cardiol 10:543–554

    Article  Google Scholar 

  • Benner T, Heiland S, Erb G, Forsting M, Sartor K (1997) Accuracy of gamma-variate fits to concentration-time curves from dynamic susceptibility-contrast enhanced MRI: inf luence of time resolution, maximal signal drop and signal-to-noise. Magn Reson Imaging 15(3):307–317

    PubMed  Google Scholar 

  • Bergmann SR, Herrero P, Markham J, Weinheimer CJ, Walsh MN (1989) Noninvasive quantitation of myocardial blood flow in human subjects with oxygen 15 labeled water and positron emission tomography. J Am Coll Cardiol 14:639–652

    PubMed  Google Scholar 

  • Bidaut LM, Vallée JP (2001) Automated registration of dynamic MR images for the quantification of myocardial perfusion. J Magn Reson Imaging 13: 648–655

    Article  PubMed  Google Scholar 

  • Bjerner T, Johansson L, Ericsson A, et al. (2001) First-pass myocardial perfusion MR imaging with outer-volume suppression and the intravascular contrast agent NC100150 injection: preliminary results in eight patients. Radiology 221:822–826

    PubMed  Google Scholar 

  • Bock JC, Henrikson O, Gotze AH, et al. (1995) Magnetic resonance perfusion imaging with gadolinium-DTPA. A quantitative approach for the kinetic analysis of first-pass residue curves. Invest Radiol 30(12):693–699

    PubMed  Google Scholar 

  • Brasch RC (1992) New directions in the development of MR imaging contrast media. Radiology 183:1–11

    PubMed  Google Scholar 

  • Burstein D, Taratuta E, Manning WJ (1991) Factors in myocardial “perfusion” imaging with ultrafast MRI and Gd-DTPA administration. Magn Reson Med 20:299–305

    PubMed  Google Scholar 

  • Canet E, Revel D, Forrat R, et al. (1993) Superparamagnetic iron oxide particles and positive enhancement for myocardial perfusion studies assessed by subsecond T-1-weighted MRI. Magn Reson Imaging 11:1139–1145

    Article  PubMed  Google Scholar 

  • Canet E, Doulk P, Janier M, et al. (1995) Influence of bolus volume and dose of gadolinium chelate for first-pass myocardial perfusion MR imaging studies. J Magn Reson Imaging 5:411–415

    PubMed  Google Scholar 

  • Cerqueira MD, Verani MS, Schwaiger M, Heo J, Iskandrian AS (1994) Safety profile of adenosine stress perfusion imaging: results from the Adenoscan Multicenter Trial Registry. J Am Coll Cardiol 23(2):384–389

    PubMed  Google Scholar 

  • Cherryman GR, Tranter J, Keal R, et al. (1998) Prospective comparison of contrast-enhanced MRI with thallium 201 SPECT and 2D echocardiography in the localization of acute myocardial infarction. Proceedings of International Society for Magnetic Resonance in Medicine, sixth scientific meeting and exhibition, Sydney, Australia, April 18–24, 1998

    Google Scholar 

  • Cullen JHS, Horsfield MA, Reek CR, et al. (1999) A myocardial perfusion reserve index in humans using first-pass contrast-enhanced magnetic resonance imaging. J Am Coll Cardiol 33:1386–1394

    Article  PubMed  Google Scholar 

  • Czernin J, Muller P, Chan S, et al. (1993) Influence of age and hemodynamics on myocardial blood flow and flow reserve. Circulation 88:62–69

    PubMed  Google Scholar 

  • Demer LL, Gould KL, Goldstein RA, et al. (1989) Assessment of coronary artery disease severity by positron emission tomography. Comparison with quantitative arteriography in 193 patients. Circulation 79:825–835

    PubMed  Google Scholar 

  • Dewey M, Kaufels N, Laule M, et al. (2004) Magnetic resonance imaging of myocardial perfusion and viability using a blood pool contrast agent. Invest Radiol 39:498–505

    Article  PubMed  Google Scholar 

  • Di Carli M, Czernin J, Hoh CK, et al. (1995) Relation among stenosis severity, myocardial blood flow, and flow reserve in patients with coronary artery disease. Circulation 91(7):1944–1951

    PubMed  Google Scholar 

  • Diesbourg LD, Prato FS, Wisenberg G, et al. (1992) Quantification of myocardial blood flow and extracellular volumes using a bolus injection of Gd-DTPA: kinetic modeling in canine ischemic disease. Magn Reson Med 23:239–253

    PubMed  Google Scholar 

  • Ding S, Wolff SD, Epstein FH (1998) Improved coverage in dynamic contrast-enhanced cardiac MRI using interleaved gradientecho EPI. Magn Reson Med. Apr 39(4):514–9

    Google Scholar 

  • Donahue K, Burstein D, Manning W, Gary M (1994) Studies of Gd-DTPA relaxivity and proton exchange rates in tissue. Magn Reson Med 32:66–76

    PubMed  Google Scholar 

  • Donahue KM, Weiskoff RM, Burstein D (1997) Water diffusion and exchange as they influence contrast enhancement. J Magn Reson Imaging 7(1):102–110

    PubMed  Google Scholar 

  • Edelman RR, Li W (1994) Contrast-enhanced echo-planar MR imaging of myocardial perfusion: preliminary study in humans. Radiology 190:771–777

    PubMed  Google Scholar 

  • Eichenberger AC, Schuiki E, Kochli VD, et al. (1994) Ischemic heart disease: assessment with gadolinium-enhanced ultrafast MR imaging and dipyridamole stress (comments). J Magn Reson Imaging 4:425–431

    PubMed  Google Scholar 

  • Fenchel M, Helber U, Simonetti OP, et al. (2004) Multislice first-pass myocardial perfusion imaging: comparison of saturation recovery (SR)-TrueFISP-two-dimensional (2D) and SR-TurboFLASH-2D pulse sequences. J Magn Reson Imaging 19(5):555–563

    Article  PubMed  Google Scholar 

  • Fritz-Hansen T, Rostrup E, Larsson HB, et al. (1996) Measurement of the arterial concentration of Gd-DTPA using MRI: a step toward quantitative perfusion imaging. Magn Reson Med 36(2):225–231

    PubMed  Google Scholar 

  • Fritz-Hansen T, Rostrup E, Ring P, Larsson H (1998) Quantification of gadolinium-DPTA concentrations for different inversion times using an IR-turbo flash pulse sequence: a study on optimizing multislice perfusion imgaging. Magn Reson Imaging 16(8):893–899

    Article  PubMed  Google Scholar 

  • Galinanes M, Loubani M, Sensky PR, et al. (2004) Efficacy of transmyocardial laser revascularization and thoracic sympathectomy for the treatment of refractory angina. Ann Thorac Surg 78(1):122–128

    Article  PubMed  Google Scholar 

  • Gallagher KP, Osakada G, Matsuzaki M, et al. (1982) Myocardial blood flow and function with critical coronary stenosis in exercising dogs. Am J Physiol 243(5):698–707

    Google Scholar 

  • Gerber BL, Bluemke DA, Chin BB, et al. (2002) Single-vessel coronary artery stenosis: myocardial perfusion imaging with Gadomer-17 first-pass MR imaging in a swine model of comparison with gadopentetate dimeglumine. Radiology 225:104–112

    PubMed  Google Scholar 

  • Germain P, Roul G, Baruthio J, et al. (2001) Myocardial flow reserve parametric map, assessed by first-pass MRI compartmental analysis at the chronic stage of infarction. J Magn Reson Imaging 13:352–360

    Article  PubMed  Google Scholar 

  • Giang TH, Nanz D, Coulden R, et al. (2004) Assessment of myocardial perfusion in coronary artery disease by magnetic resonance: first multicenter experience. Eur Heart J (In press)

    Google Scholar 

  • Go RT, Marwick TH, MacIntyre WJ, et al. (1990) A prospective comparison of rubidium 82 PET and thallium 201 SPECT myocardial perfusion imaging utilizing a single dipyridamole stress in the diagnosis of coronary artery disease. J Nucl Med 31:1899–1905

    PubMed  Google Scholar 

  • Gould K (1978) Noninvasive assessment of coronary stenosis by myocardial perfusion imaging during pharmacologic coronary vasodilatation. I. Physiologic basis and experimental validation. Am J Cardiol 41:267–278

    Article  PubMed  Google Scholar 

  • Gould KL (1990) Positron emission tomography and interventional cardiology. Am J Cardiol 66:51–58

    Google Scholar 

  • Gould KL, Kelley KO (1982) Physiological significance of coronary flow velocity and changing stenosis geometry during coronary vasodilation in awake dogs. Circ Res 50(5):695–704

    PubMed  Google Scholar 

  • Gould KL, Kirkeeide RL, Buchi M (1990) Coronary flow reserve as a physiologic measure of stenosis severity. J Am Coll Cardiol 15:459–474

    PubMed  Google Scholar 

  • Hadjimiltiades S, Watson R, Hakki AH, Heo J, Iskandrian AS (1989) Relation between myocardial thallium-201 kinetics during exercise and quantitative coronary angiography in patients with one vessel coronary artery disease. J Am Coll Cardiol 13:1301–1308

    PubMed  Google Scholar 

  • Harris PA, Lorenz CH, Holburn GE, Overholser KA (1997) Regional measurement of the Gd-DTPA tissue partition coefficient in canine myocardium. Magn Reson Med 38(4):541–545

    PubMed  Google Scholar 

  • Harrison DG, White CW, Hiratzka LF, et al. (1984) The value of lesion cross-sectional area determined by quantitative coronary angiography in assessing the physiologic significance of proximal left anterior descending coronary arterial stenoses. Circulation 69(6):1111–1119

    PubMed  Google Scholar 

  • Hartnell G, Cerel A, Kamalesh M, et al. (1994) Detection of myocardial ischemia: value of combined myocardial perfusion and cineangiographic MR imaging. Am J Roentgenol 163:1061–1067

    Google Scholar 

  • Heidemann RM, Ozsarlak O, Parizel PM, et al. (2003) A brief review of parallel magnetic resonance imaging. Eur Radiol 13(10):2323–2337

    Google Scholar 

  • Henkin RE, Kalousdian S, Kikkawa RM, Kemel A (1994) 201-Thallium myocardial perfusion imaging utilizing single-photon emission computed tomography (SPECT). American Medical Association

    Google Scholar 

  • Hunold P, Maderwald S, Eggebrecht H, Vogt FM, Barkhausen J (2004) Steady-state free precession sequences in myocardial first-pass perfusion MR imaging: comparison with turboFLASH imaging. Eur Radiol 14:409–416

    Article  PubMed  Google Scholar 

  • Ibrahim T, Nekolla SG, Schreiber K, et al. (2002) Assessment of coronary flow reserve: comparison between contrast-enhanced magnetic resonance imaging and positron emission tomography. J Am Coll Cardiol 39(5):864–870

    Article  PubMed  Google Scholar 

  • Ishida N, Sakuma H, Motoyasu M, et al. (2003) Noninfarcted myocardium: correlation between dynamic first-pass contrast-enhanced myocardial MR imaging and quantitative coronary angiography. Radiology 229:209–216

    PubMed  Google Scholar 

  • Jerosch-Herold M, Wilke N (1997) MR first pass imaging: quantitative assessment of transmural perfusion and collateral flow. Int J Card Imaging 13:205–218

    Article  PubMed  Google Scholar 

  • Jerosch-Herold M, Wilke N, Stillman AE (1998) Magnetic resonance quantification of the myocardial perfusion reserve with a Fermi function model for constrained deconvolution. Med Phys 25(1):73–84

    Article  PubMed  Google Scholar 

  • Jerosch-Herold M, Swingen C, Seethamraju RT (2002) Myocardial blood flow quantification with MRI by model-independent deconvolution. Med Phys 29(5):886–897

    Article  PubMed  Google Scholar 

  • Jerosch-Herold M, Hu X, Murthy NS, Rickers C, Stillman AE (2003) Magnetic resonance imaging of myocardial contrast enhancement with MS-325 and its relation to myocardial blood flow and the perfusion reserve. J Magn Reson Imaging 18(5):544–554

    Article  PubMed  Google Scholar 

  • Jerosch-Herold M, Seethamraju RT, Swingen CM, Wilke NM, Stillman AE (2004) Analysis of myocardial perfusion MRI. J Magn Reson Imaging 19:758–770

    Article  PubMed  Google Scholar 

  • Johansson LO, Akenson P, Ragnarsson A, Ahlström H (1998) Myocardial perfusion using a new ultra small paramagnetic iron oxide, enabling T2* perfusion with very short echo-times: first trials in humans. Proceedings of International Society for Magnetic Resonance in Medicine, sixth scientific meeting and exhibition, Sydney, Australia, April 18–24, 1998

    Google Scholar 

  • Judd RM, Ataly, MK, Rottman GA, Zerhouni EA (1995a) Effects of myocardial water exchange on T1 enhancement during bolus administration of MR contrast agents. Magn Reson Med 33:215–223

    PubMed  Google Scholar 

  • Judd RM, Reeder SB, Atalar E, McVeigh ER, Zerhouni EA (1995b) A magnetization-driven gradient echo pulse sequence for the study of myocardial perfusion. Magn Reson Med 34:276–282

    PubMed  Google Scholar 

  • Judd RM, Reeder SB, May-Newman K (1999) Effects of water exchange on the measurement of myocardial perfusion using paramagnetic contrast agents. Magn Reson Med 41(2):334–342

    Article  PubMed  Google Scholar 

  • Kantor HL, Rzedzian RR, Buxton R, et al. (1994) Contrast induced myocardial signal reduction: effect of lanthanide chelates on ultra high speed MR images. Magn Reson Imaging 12:51–59

    Article  PubMed  Google Scholar 

  • Kaul S, Senior R, Dittrich H, et al. (1997) Detection of coronary artery disease with myocardial contrast echocardiography: comparison with 99mTc-sestamibi single-photon emission tomography. Circulation 96:785–792

    PubMed  Google Scholar 

  • Keijer JT, Rossum AC van, Eenige MJ van, et al. (1995) Semiquantitation of regional myocardial blood flow in normal human subjects by first-pass magnetic resonance imaging. Am Heart J 130(4):893–901

    Article  PubMed  Google Scholar 

  • Keijer JT, Rossum AC van, Eenige MJ van, et al. (2000) Magnetic resonance imaging of regional myocardial perfusion in patients with single-vessel coronary artery disease: quantitative comparison with (201)thallium-SPECT and coronary angiography. J Magn Reson Imaging 11(6):607–615

    Article  PubMed  Google Scholar 

  • Kety SS (1951) The theory and applicatoins of the exchange of inert gas at the lungs and tissues. Pharmacol Rev 3:1

    PubMed  Google Scholar 

  • Kivelitz DE, Bis KG, Wilke NM, et al. (1997a) Quantitative MR first pass perfusion imaging demonstrates coronary artery patency post interventions (abstract). Radiology (Suppl) 205:254

    Google Scholar 

  • Kivelitz DE, Wilke NM, Bis KG, et al. (1997b) Quantitative MR first pass versus N13-ammonia PET perfusion imaging in coronary artery disease (abstract). Radiology (Suppl) 205:253

    PubMed  Google Scholar 

  • Klein MA, Collier BD, Hellman RS, Bamrah VS (1993) Detection of chronic coronary artery disease: value of pharmacologically stressed, dynamically enhanced turbo-fast low-angle shot MR images. Am J Roentgenol 161:257–263

    Google Scholar 

  • Klocke F (1983) Measurements of coronary blood flow and degree of stenosis: current clinical implications and continuing uncertainties. J Am Coll Cardiol 1:31–36

    PubMed  Google Scholar 

  • Klocke FJ, Simonetti OP, Judd RM (2001) Limits of detection of regional differences in vasodilated flow in viable myocardium by first-pass magnetic resonance perfusion imaging. Circulation 104:2412–2416

    PubMed  Google Scholar 

  • Kloner RA, Przyklenk K, Rahimtoola SH, Braunwald E (1992) In: Opie LH (ed) Stunning, hibernation and calcium in myocardial ischemia and reperfusion. Kluwer, Dordrecht, pp 251–280

    Google Scholar 

  • Kraitchman DL, Wilke N, Hexeberg E, et al. (1996) Myocardial perfusion and function in dogs with moderate coronary stenosis. Mag Reson Med 35:771–780

    Google Scholar 

  • Kraitchman DL, Chin BB, Heldman AW, Solaiyappan M, Bluemke DA (2002) MRI detection of myocardial perfusion defects due to coronary artery stenosis with MS-325. J Magn Reson Imaging 015:149–158

    Article  Google Scholar 

  • Kroll K, Wilke N, Jerosch-Herold M, et al. (1996) Accuracy of modeling of regional myocardial flows from residue functions of an intravascular indicator) Modeling regional myocardial flows from residue functions of an intravascular indicator., Am J Physiol Heart Circ Physiol 40:1643–1655

    Google Scholar 

  • Kwong RY, Schussheim AE, Rekhraj S, et al. (2003) Detecting acute coronary syndrome in the emergency department with cardiac magnetic resonance imaging. Circulation 107:531–537

    Article  PubMed  Google Scholar 

  • Laham RJ, Simons M, Pearlman JD, Ho KK, Baim DS (2002) Magnetic resonance imaging demonstrates improved regional systolic wall motion and thickening and myocardial perfusion of myocardial territories treated by laser myocardial revascularization. J Am Coll Cardiol 39(1):1–8

    Article  PubMed  Google Scholar 

  • Landis CS, Li X, Telang FW, et al. (2000) Determination of the MRI contrast agent concentration time course in vivo following bolus injection: effect of equilibrium transcyto-lemmal water exchange. Magn Reson Med 44(4):563–574. Erratum:Magn Reson Med 2002 48(2):410

    Article  PubMed  Google Scholar 

  • Larsson HB, Stubgaard M, Sondergaard L, Henriksen O (1994) In vivo quantification of the unidirectional influx constant for Gd-DTPA diffusion across the myocardial capillaries with MR imaging. J Magn Reson Imaging 4(3):433–440

    PubMed  Google Scholar 

  • Larsson HB, Fritz-Hansen T, Rostrup E, et al. (1996) Myocardial perfusion modeling using MRI. Magn Reson Med 35(5):716–726

    PubMed  Google Scholar 

  • Larsson HB, Rosenbaum S, Fritz-Hansen T (2001) Quantification of the effect of water exchange in dynamic contrast MRI perfusion measurements in the brain and heart. Magn Reson Med 46(2):272–281

    Article  PubMed  Google Scholar 

  • Lassen NA, Perl W (1979) Tracer kinetic methods in medical physiology. New York, Raven

    Google Scholar 

  • Laub G, Simonetti O (1996) Assessment of myocardial perfusion with saturation-recovery Turbo FLASH sequences. ISMR, 4th Scientific Meeting, New York, p 179

    Google Scholar 

  • Lauerma K, Virtanen KS, Sipila LM, Hekali P, Aronen HJ (1997) Multislice MRI in assessment of myocardial perfusion in patients with single vessel proximal left anterior descending coronary artery disease before and after revascularization. Circulation 96:2859–2867

    PubMed  Google Scholar 

  • Le Bihan D (1995) Diffusion and perfusion magnetic resonance imaging. Applications to functional MRI. Raven, New York

    Google Scholar 

  • Le Bihan D, Turner R (1992) The capillary network: a link between IVIM and classical perfusion. Magn Reson Med 27:171–178

    PubMed  Google Scholar 

  • Lee DC, Simonetti OP, Harris KR, et al. (2004) Magnetic resonance versus radionuclide pharmacological stress perfusion imaging for flow-limiting stenoses of varying severity. Circulation 110:58–65

    Article  PubMed  Google Scholar 

  • Lima JAC, Judd RM, Bazille A, et al. (1995) Regional heterogeneity of human myocardial infarcts demonstrated by contrast-enhanced MRI. Potential mechanisms. Circulation 92:1117–1125

    PubMed  Google Scholar 

  • Loghin C, Sdringola S, Gould KL (2004) Common artifacts in PET myocardial perfusion images due to attenuation-emission misregistration: clinical significance, causes, and solutions. J Nucl Med 45:1029–1039 Magn Reson Med 27(1):171–178

    PubMed  Google Scholar 

  • Manning WJ, Atkinson DJ, Grossman W, Paulin S, Edelman RR (1991) First-pass nuclear magnetic resonance imaging studies using gadolinium-DTPA in patients with coronary artery disease. J Am Coll Cardiol 18:959–965

    PubMed  Google Scholar 

  • Manning WJ, Atkinson DJ, Parker JA, Edelman RR (1992) Assessment of intracardiac shunts with gadolinium-enhanced ultrafast MR imaging. Radiology 184(2):357–361

    PubMed  Google Scholar 

  • Mansfield P (1977) Multiplanar image formation using NMR spin echoes. J Physiol (Lond) 10:55–58

    Google Scholar 

  • Masugata H, Lafitte S, Peters B, Strachan GM, DeMaria AN (2001) Comparison of real-time and intermittent triggered myocardial contrast echocardiography for quantification of coronary stenosis severity and transmural perfusion gradient. Circulation 104(13):1550–1556

    PubMed  Google Scholar 

  • Matheijssen NA, Louwerenburg HW, Rugge FP van, et al. (1996) Comparison of ultrafast dipyridamole magnetic resonance imaging with dipyridamole SestaMIBI SPECT for detection of perfusion abnormalities in patients with one-vessel coronary artery disease: assessment by quantitative model fitting. Magn Reson Med 35:221–228

    PubMed  Google Scholar 

  • Mauss Y, Grucker D, Fornasiero D, Chambron J (1985) NMR compartmentalization of free water in the perfused rat heart. Magn Reson Med 2:187–194

    PubMed  Google Scholar 

  • Meier P, Zierler KL (1954) On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol 6(12):731–744

    PubMed  Google Scholar 

  • Meza MF, Mobarek S, Sonnemaker R, et al. (1996) Myocardial contrast echocardiography in human beings: correlation of resting defects to sestamibi single photon emission computed tomography. Am Heart J 132:528–535

    Article  PubMed  Google Scholar 

  • Mitchell MD, Osbakken M (1991) Estimation of myocardial perfusion using deuterium nuclear magnetic resonance. Magn Reson Imaging 9:545–552

    Article  PubMed  Google Scholar 

  • Muehling OM, Wilke NM, Panse P, et al. (2003) Reduced myocardial perfusion reserve and transmural perfusion gradient in heart transplant arteriopathy assessed by magnetic resonance imaging. J Am Coll Cardiol 42(6):1054–1060

    Article  PubMed  Google Scholar 

  • Muzik O, Duvernoy C, Beanlands RS, et al. (1998) Assessment of diagnostic performance of quantitative flow measurements in normal subjects and patients with angiographically documented coronary artery disease by means of nitrogen 13 ammonia and positron emission tomography. J Am Coll Cardiol 31:534–540

    Article  PubMed  Google Scholar 

  • Nagel E, Klein C, Paetsch I, et al. (2003) Magnetic resonance perfusion measurements for the noninvasive detection of coronary artery disease. Circulation 108:432–437

    Article  PubMed  Google Scholar 

  • Nienaber CA, Spielmann RP, Salge D, et al. (1987) Noninvasive identification of collateralized myocardium by 201 thallium tomography in vasodilation and redistribution. Z Kardio 76:612–620

    Google Scholar 

  • Panting JR, Taylor AM, Gatehouse PD, et al. (1999) First-pass myocardial perfusion imaging and equilibrium signal changes using the intravascular contrast agent NC100150 injection. J Magn Reson Imaging 10:404–410

    Article  PubMed  Google Scholar 

  • Panting JR, Gatehouse PD, Yang GZ (2001) Echo-planar magnetic resonance myocardial perfusion imaging: parametric map analysis and comparison with Thallium SPECT. J Magn Reson Imaging 13:192–200

    Article  PubMed  Google Scholar 

  • Panting JR, Gatehouse PD, Yang GZ, et al. (2002) Abnormal subendocardial perfusion in cardiac syndrome X detected by cardiovascular magnetic resonance imaging. N Engl J Med 346:1948–1953

    Article  PubMed  Google Scholar 

  • Patterson RE, Horowitz SF, Eisner RL (1994) Comparison of modalities to diagnose coronary artery disease. Semin Nucl Med 24:286–310

    PubMed  Google Scholar 

  • Pearlman JD, Laham RJ, Simons M (2000) Coronary angiogenesis: detection in vivo with MR imaging sensitive to collateral neocirculation-preliminary study in pigs. Radiology 214(3):801–807

    PubMed  Google Scholar 

  • Pennell DJ (1994) Pharmacological cardiac stress: when and how? Nucl Med Commun 15:578–585

    PubMed  Google Scholar 

  • Penzkofer H, Wintersperger BJ, Knez A, Weber J, Reiser M (1999) Assessment of myocardial perfusion using multisection first-pass MRI and color-coded parameter maps: a comparison to 99mTc Sesta MIBI SPECT and systolic myocardial wall thickening analysis. Magn Reson Imging 17:161–170

    Article  Google Scholar 

  • Plein S, Ridgway JP, Jones TR, Bloomer TN, Sivananthan MU (2002) Coronary artery disease: assessment with a comprehensive MR imaging protocol — initial results. Radiology 225(1):300–307

    PubMed  Google Scholar 

  • Porter TR, Xie F, Silver M, Kricsfeld D, Oleary E (2001) Real-time perfusion imaging with low mechanical index pulse inversion Doppler imaging. J Am Coll Cardiol 37(3):748–753

    Article  PubMed  Google Scholar 

  • Reeder SB, Atalar E, Faranesh AZ, McVeigh ER (1999) Multiecho segmented κ-space imaging: an optimized hybrid sequence for ultrafast cardiac imaging. Magn Reson Med 41(2):375–385

    Article  PubMed  Google Scholar 

  • Reimer KA, Jennings RB (1979) The wavefront progression of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab Invest 40:633–644

    PubMed  Google Scholar 

  • Reimer P, Bremer C, Allkemper T, et al. (2004) Myocardial perfusion and MR angiography of chest with SHU 555C: results of placebo-controlled clinical phase I study. Radiology 231:474–481

    PubMed  Google Scholar 

  • Revel D, Canet E, Sebbag L, et al. (1996) First-pass and delayed magnetic resonance imaging studies of reperfused myocardial infarction with iron oxide particles. Acad Radiol 3:398–401

    Google Scholar 

  • Rosen BR, Belliveau JW, Vevea JM, Brady TJ (1990) Perfusion with NMR contrast agents. Magn Reson Med 14:249–265

    PubMed  Google Scholar 

  • Rugge FP van, Boceel JJ, Wall EE van der, et al. (1991) Cardiac first-pass and myocardial perfusion in normal subjects assessed by sub-second Gd-DTPA enhanced MR Imaging J Comput Assist Tomogr 15:959–965

    PubMed  Google Scholar 

  • Saeed M, Wendland MF, Higgins CB (1994) Contrast media for MR imaging of the heart. J Magn Reson Imaging 4:269–279

    PubMed  Google Scholar 

  • Saeed M, Wendland MF, Higgins CB (1995) The developing role of magnetic resonance contrast media in the detection of ischemic heart disease. Proc Soc Exp Biol Med 208:238–254

    PubMed  Google Scholar 

  • Sambuceti G, Parodi O, Marcassa C, et al. (1993) Alteration in regulation of myocardial blood flow in one vessel coronary artery disease determined by positron emission tomography. Am J Cardiol 72:538–543

    Article  PubMed  Google Scholar 

  • Schaefer S, Lange RA, Kulkarni PV, et al. (1989) In vivo nuclear magnetic resonance imaging of myocardial perfusion using the paramagnetic contrast agent manganese gluconate. J Am Coll Cardiol 14:472–480

    Article  PubMed  Google Scholar 

  • Schaefer S, Tyen R van, Saloner D (1992) Evaluation of myocardial perfusion abnormalities with gadolinium-enhanced snapshot MR imaging in humans. Work in progress. Radiology 185:795–801

    PubMed  Google Scholar 

  • Schreiber WG, Schmitt M, Kalden P, et al. (2002) Dynamic contrast-enhanced myocardial perfusion imaging using saturation-prepared TrueFISP. J Magn Reson Imaging 16:641–652

    Article  PubMed  Google Scholar 

  • Schweiger M (1994) Myocardial perfusion imaging with PET. J Nucl Med 35:693–698

    PubMed  Google Scholar 

  • Schwitter J, Debatin F (1995) MRI contrast in the assessment of myocardial perfusion. Adv MRI Contrast 3:34–47

    Google Scholar 

  • Schwitter J, Debatin JF, Schulthess GK von, McKinnon GC (1997) Normal myocardial perfusion assessed with multi-shot echo-planar imaging. Magn Reson Med 37:140–147

    PubMed  Google Scholar 

  • Schwitter J, Nanz D, Kneifel S, et al. (2001) Assessment of myocardial perfusion in coronary artery disease by magnetic resonance. A comparison with positron emission tomog-raphy and coronary angiography. Circulation 103:2230–2235

    PubMed  Google Scholar 

  • Schwitter et al. (2004) Eur Heart J (In press)

    Google Scholar 

  • Sensky PR, Samani NJ, Reek C, Cherryman GR (2002) Magnetic resonance perfusion imaging in patients with coronary artery disease: a qualitative approach. Int J Cardio-vasc Imaging 18:373–383

    Article  Google Scholar 

  • Shaw LJ, Iskandrian AE (2004) Prognostic value of gated myocardial perfusion SPECT. J Nucl Cardiol 11:171–185

    Article  PubMed  Google Scholar 

  • Siebert, JE, Eisenberg, JD, Pernicone, JR, Cooper TG (1998) Practical myocardial perfusion studies via adenosine pharmacologic stress. Proceedings of International Society for Magnetic Resonance in Medicine, sixth scientific meeting and exhibition, Sydney, Australia, April 18–24, 1998

    Google Scholar 

  • Sigal SL, Soufer R, Fetterman RC, Mattera JA, Wackers FJ (1991) Reproducibility of quantitative planar thallium-201 scintigraphy: quantitative criteria for reversibility of myocardial perfusion defects. J Nucl Med 32:759–765

    PubMed  Google Scholar 

  • Slavin GS, Wolff SD, Gupta SN, Foo TK (2001) First-pass myocardial perfusion MR imaging with interleaved notched saturation: feasibility study. Radiology 219:258–263

    PubMed  Google Scholar 

  • Taylor AJ, Al-Saadi N, Abdel-Aty H, et al. (2004) Detection of acutely impaired microvascular reperfusion after infarct angioplasty with magnetic resonance imaging. Circulation 109:2080–2085

    Article  PubMed  Google Scholar 

  • Taylor AM, Pennell DJ (1996) Recent advances in cardiac magnetic resonance imaging. Curr Opin Cardiol 11:635–642

    PubMed  Google Scholar 

  • Thiele H, Plein S, Ridgway JP, et al. (2003) Effects of missing dynamic images on myocardial perfusion reserve index calculation: comparison between an every heartbeat and an alternate heartbeat acquisition. J Cardiovasc Magn Reson 5(2):343–352

    Article  PubMed  Google Scholar 

  • Tofts PS (1997) Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 7:91–101

    PubMed  Google Scholar 

  • Tong CY, Prato FS, Wisenberg G, et al. (1993a) Techniques for the measurement of the local myocardial extraction efficiency for inert diffusible contrast agents such as gadopentate dimeglumine. Magn Reson Med 30:332–336

    PubMed  Google Scholar 

  • Tong CY, Prato FS, Wisenberg G, et al. (1993b) Measurement of the extraction efficiency and distribution volume for Gd DTPA in normal and diseased canine myocardium. Magn Reson Med 30:337–46

    PubMed  Google Scholar 

  • Tsekos NV, Zhang Y, Merkle H, et al. (1995) Fast anatomical imaging of the heart and assessment of myocardial perfusion with arrhythmia insensitive magnetization prepara-tion. Magn Reson Med 34:530–536

    PubMed  Google Scholar 

  • Unger EF, Banai S, Shou M, et al. (1994) Basic fibroblast growth factor enhances myocardial collateral flow in a canine model. Am J Physiol 266:1588–1595

    Google Scholar 

  • Uren NG, Melin JA, De Bruyne B, et al. (1994) Relation between myocardial blood flow and the severity of coronary artery stenosis. N Engl J Med 330:1782–1788

    Article  PubMed  Google Scholar 

  • Vallee JP, Sostman HD, MacFall JR, Coleman RE (1997) Quantification of myocardial perfusion with MRI and exogenous contrast agents. Cardiology (1):90–105

    Google Scholar 

  • Vallee JP, Sostman HD, MacFall JR, et al. (1997) MRI quantitative myocardial perfusion with compartmental analysis: a rest and stress study. Magn Reson Med 38(6):981–989

    PubMed  Google Scholar 

  • Vatner SF (1980) Correlation between acute reductions in myocardial blood flow and function in conscious dogs. Circ Res 47:201

    PubMed  Google Scholar 

  • Wacker CM, Hartlep AW, Pfleger S, et al. (2003) Susceptibility-sensitive magnetic resonance imaging detects human myocardium supplied by a stenotic coronary artery without a contrast agent. J Am Coll Cardiol 41:834–840

    Article  PubMed  Google Scholar 

  • Wagner A, Mahrholdt H, Holly TA, et al. (2003) Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet 361:374–379

    Article  PubMed  Google Scholar 

  • Walsh EG, Doyle M, Lawson MA, Blackwell GG, Pohost GM (1995) Multislice first-pass myocardial perfusion imaging on a conventional clinical scanner. Magn Reson Med 34:39–47

    PubMed  Google Scholar 

  • Wedeking P, Sotak CH, Telser J, et al. (1992) Quantitative dependence of MR signal intensity on tissue concentration of Gd(HP-DO3A) in the nephrectomized rat. Magn Reson Imaging 10:97–108

    Article  PubMed  Google Scholar 

  • Wei K (2002) Approaches to the detection of coronary artery disease using myocardial contrast echocardiography. Am J Cardiol 90(10A):48J–58J

    Article  PubMed  Google Scholar 

  • Wei K, Jayaweera AR, Firoozan S, et al. (1998) Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation 97(5):473–483

    PubMed  Google Scholar 

  • Weinmann HJ, Brasch RC, Press WR, Wesbey GE (1983) Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent. AJR Am J Roentgenol 142:619–624

    Google Scholar 

  • Weiskoff RM, Chesler D, Boxerman JL, Rosen BR (1993) Pitfalls in MR measurement of tissue blood flow with intravascular tracers: which mean transit time? Magn Reson Med 29:553–558

    PubMed  Google Scholar 

  • Wendland MF, Saeed M, Masui T, et al. (1993a) Echo-planar MR imaging of normal and ischemic myocardium with gadodiamide injection. Radiology 186:535–542

    PubMed  Google Scholar 

  • Wendland MF, Saeed M, Masui T, Derugin N, Higgins CB (1993b) First pass of an MR susceptibility contrast agent through normal and ischemic heart: gradient-recalled echo-planar imaging. J Magn Reson Imaging 3:755–760

    PubMed  Google Scholar 

  • Wendland MF, Saeed M, Yu KK, et al. (1994) Inversion recovery EPI of bolus transit in rat myocardium using intravascular and extravascular gadolinium-based MR contrast media: dose effects on peak signal enhancement. Magn Reson Med 32:319–329

    PubMed  Google Scholar 

  • Wetter DR, McKinnon GC, Debatin JF, Schulthess G von (1995) Cardiac echo-planar MR imaging: comparison of single-and multiple-shot techniques. Radiology 194:765–770

    PubMed  Google Scholar 

  • Wilke N, Simm C, Zhang J, et al. (1993) Contrast-enhanced first pass myocardial perfusion imaging: correlation between myocardial blood flow in dogs at rest and during hyperemia. Magn Reson Med 29:485–497

    PubMed  Google Scholar 

  • Wilke N, Jerosch-Herold M., Stillman AE, et al. (1994) Concepts of myocardial perfusion imaging in magnetic resonance imaging. Magn Reson Q 10(4):249–286

    PubMed  Google Scholar 

  • Wilke N, Jerosch-Herold M, Wang Y, et al. (1997) Myocardial perfusion reserve: assessment with multisection, quantitative, first-pass MR imaging. Radiology 204:373–384

    PubMed  Google Scholar 

  • Williams DS, Grandis DJ, Zhang W, Koretsky AP (1993) Magnetic resonance imaging of perfusion in the isolated rat heart using spin inversion of arterial water. Magn Reson Med 30:361–365

    PubMed  Google Scholar 

  • Wilson RF, Wyche K, Christensen BV, Zimmer S, Laxson DD (1990) Effects of adenosine on human coronary arterial circulation. Circulation 82:1595–1606

    PubMed  Google Scholar 

  • Wintersperger BJ, Penzkofer H, Knez A, Reiser M (2000) Myocardial perfusion at rest and during stress. MR signal characteristics of persistent and reversible myocardial ischemia. Radiology 40:155–161

    Article  Google Scholar 

  • Yu K, Saeed M, Wendland M, et al. (1992) Real-time dynamics of an extravascular magnetic resonance contrast medium in acutely infarcted myocardium using inversion recovery and gradient-recalled echo-planar imaging. Invest Radiol 27:927–934

    PubMed  Google Scholar 

  • Yu KK, Saeed M, Wendland MF, et al. (1993) Comparison of T1-enhancing and magnetic-susceptibility magnetic resonance contrast agents for demarcation of the jeopardy area in experimental myocardial infarction. Invest Radiol 28:1015–1023

    PubMed  Google Scholar 

  • Zierler K (2000) Indicator dilution methods for measuring blood flow, volume, and other properties of biological systems: a brief history and memoir. Ann Biomed Eng 28(8):836–848

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Al-Saadi, N., Bogaert, J. (2005). Myocardial Perfusion. In: Bogaert, J., Dymarkowski, S., Taylor, A.M. (eds) Clinical Cardiac MRI. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26997-5_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-26997-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40170-4

  • Online ISBN: 978-3-540-26997-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics