Skip to main content

Cardiac Function

  • Chapter
Clinical Cardiac MRI

Part of the book series: Medical Radiology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alfakih K, Plein S, Thiele H et al (2003) Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady-state free precession imaging sequences. J Magn Reson Imaging 17:323–329

    Article  PubMed  Google Scholar 

  • Alley MT, Napel S, Amano Y et al (1999) Fast 3D cardiac cine MR imaging. J Magn Reson Imaging 9:751–755

    Article  PubMed  Google Scholar 

  • Arheden H, Holmqvist C, Thilen U et al (1999) Left-to-right shunts: comparison of measurement obtained with MR velocity mapping and with radionuclide angiography. Radiology 211:453–458

    PubMed  Google Scholar 

  • Arts T, Bovendeerd PHM, Prinzen FW, Reneman RS (1991) Relation between left ventricular cavity pressure and volume and systolic fiber stress and strain in the wall. Biophys J 59:93–102

    PubMed  Google Scholar 

  • Atkinson DJ, Edelman RR (1991) Cineangiography of the heart in a single breath hold with a segmented turboflash sequence. Radiology 178:357–360

    PubMed  Google Scholar 

  • Aurigemma G, Davidoff A, Silver K, Boehmer J (1992) Left ventricular mass quantitation using single-phase cardiac magnetic resonance imaging. Am J Cardiol 70:259–262

    Article  PubMed  Google Scholar 

  • Axel L, Dougherty L (1989a) Heart wall motion: improved method for spatial modulation of magnetization for MR imaging. Radiology 172:349–350

    PubMed  Google Scholar 

  • Axel L, Dougherty L (1989b) MR imaging of motion with spatial modulation of magnetization. Radiology 171:841–845

    PubMed  Google Scholar 

  • Azhari H, Weiss JL, Rogers WJ, et al (1993) Noninvasive quantification of principal strains in normal canine hearts using tagged MRI images in 3-D. Am J Physiol Heart Circ Physiol 264:33–41

    Google Scholar 

  • Baer FM, Smolarz R, Jungehulsing M et al (1992) Feasibility of high-dose dipyridamole MRI for detection of coronary artery disease and comparison with coronary angiography. Am J Cardiol 69:51–56

    Article  PubMed  Google Scholar 

  • Baer FM, Theissen P, Smolarz K et al (1993) Dobutamine versus dipyridamole-magnetic resonance imaging: safety and sensitivity for the diagnosis of coronary artery stenoses. Z Kardiol 82:494–503

    PubMed  Google Scholar 

  • Baer FM, Theissen P, Schneider CA, et al (1994) Magnetic resonance imaging techniques for the assessment of residual myocardial viability. Herz 19:51–64

    PubMed  Google Scholar 

  • Baldy C, Duke P, Crossville P, et al (1994) Automated myocardial edge detection from breath-hold cine MR images: evaluation of left ventricular volumes and mass. Magn Reson Imaging 12:589–598

    Article  PubMed  Google Scholar 

  • Barkhausen J, Ruehm SG, Goyen M, et al (2001) MR evaluation of ventricular function: true fast imaging with steady-state precession versus fast low-angle shot cine MR imaging: feasibility study. Radiology 219:264–269

    PubMed  Google Scholar 

  • Barkhausen J, Goyen M, Rühm SG et al (2002) Assessment of ventricular function with single breath-hold real-time steady-state free precession cine MR imaging. Am J Roentgenol AJR 178:731–735

    Google Scholar 

  • Bavelaar-Croon CDL, Kayser HWM, Wall EE van der et al (2000) Left ventricular function: correlation of quantitative gated SPECT and MR imaging over a wide range of values. Radiology 217:572–575

    PubMed  Google Scholar 

  • Beerbaum P, Köperich H, Barth P, et al (2001) Noninvasive quantification of left-to-right shunts in pediatric patients. Phase-contrast cine magnetic resonance imaging compared with invasive oxymetry. Circulation 103: 2476–2482

    PubMed  Google Scholar 

  • Bellinger NG, Burgess MI, Ray SG et al (2000a) Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance. Are they interchangeable? Eur Heart J 21:1387–1396

    Article  PubMed  Google Scholar 

  • Bellinger NG, Davies LV, Francis JM, et al (2000b) Reduction of sample size for studies of remodeling of heart failure by the use of cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2:271–278

    PubMed  Google Scholar 

  • Bellenger NG, Francis JM, Davies CL, Coats AJ, Pennell DJ (2000c) Establishment and performance of a magnetic resonance cardiac function clinic. J Cardiovasc Magn Reson 2:271–278

    PubMed  Google Scholar 

  • Bellenger NG, Marcus NJ, Rajappan K, et al (2002) Comparison of techniques for the measurement of left ventricular function following cardiac transplantation. J Cardiovasc Magn Reson 4:255–263

    Article  PubMed  Google Scholar 

  • Beyar R, Weiss JL, Shapiro EP, et al (1993) Small apex-to-base heterogeneity in radius-to-thickness ratio by three-dimensional magnetic resonance imaging. Am J Physiol Heart Circ Physiol 264:133–140

    Google Scholar 

  • Bloomer TN, Plein S, Radjenovic A et al (2001) Cine MRI using steady state free precession in the radial long axis orientation is a fast and accurate method for obtaining volumetric data of the left ventricle. J Magn Reson Imaging 14:685–692

    Article  PubMed  Google Scholar 

  • Bloomgarden DC, Fayad ZA, Ferrari VA, Chin B, Sutton MGA (1997) Global cardiac function using fast breath-hold MRI: validation of new acquisition and analysis techniques. Magn Reson Med 37:683–692

    PubMed  Google Scholar 

  • Bogaert J (1997) Three-dimensional strain analysis of the human left ventricle. PhD dissertation, Catholic University, Leuven, Belgium

    Google Scholar 

  • Bogaert J, Rademakers FE (2001) Regional nonuniformity of the normal adult human left ventricle. A 3D MR myocardial tagging study. Am J Physiol Heart Circ Physiol 280:610–620

    Google Scholar 

  • Bogaert J, Bosmans H, Rademakers F et al (1995) Left ventricular quantification with breath-hold MR imaging: comparison with echocardiography. Magma 3:5–12

    PubMed  Google Scholar 

  • Bogaert J, Maes A, Van de Werf F et al (1999) Functional recovery of subepicardial myocardial tissue in transmural myocardial infarction after successful reperfusion. Circulation 99:36–43

    PubMed  Google Scholar 

  • Bogaert J, Bosmans H, Maes A, et al (2000) Remote myocardial dysfunction following acute anterior myocardial infarction. Impact of LV shape on regional function. J Am Coll Cardiol 35:1525–1534

    Article  PubMed  Google Scholar 

  • Bolster BJ, McVeigh ER, Zerhouni EA (1990) Myocardial tagging in polar coordinates with use of striped tags. Radiology 177:769–772

    PubMed  Google Scholar 

  • Bornstedt A, Nagel E, Schalla S, et al (2001) Multi-slice dynamic imaging: complete functional cardiac MR examination within 15 seconds. J Magn Reson Imaging 14:300–305

    Article  PubMed  Google Scholar 

  • Borow KM, Neumann A, Marcus RH, Sareli P, Lang RM (1992) Effects of simultaneous alterations in preload and afterload on measurements of left ventricular contractility in patients with dilated cardiomyopathy: comparisons of ejection phase, isovolumetric and end-systolic forcevelocity indexes. J Am Coll Cardiol 20:787–795

    PubMed  Google Scholar 

  • Bosmans H, Bogaert J, Rademakers FE et al (1996) Left ventricular radial tagging acquisition using gradient-recalled-echo techniques: sequence optimization. Magma 4:123–133

    Article  PubMed  Google Scholar 

  • Bottini PB, Carr AA, Prisant M, et al (1995) Magnetic resonance imaging compared to echocardiography to assess left ventricular mass in the hypertensive patient. Am J Hypertens 8:221–228

    Article  PubMed  Google Scholar 

  • Brecker SJD (2000) The importance of long axis ventricular function. Heart 84:577–579

    Article  PubMed  Google Scholar 

  • Brinker JA, Weiss JL, Lappe DL et al (1980) Leftward septal displacement during right ventricular loading in man. Circulation 61:626–633

    PubMed  Google Scholar 

  • Buchalter MB, Weiss JL, Rogers WJ (1990) Noninvasive quantification of left ventricular rotational deformation in normal humans using magnetic resonance imaging myocardial tagging. Circulation 81:1236–1244

    PubMed  Google Scholar 

  • Buchalter MB, Rademakers FE, Weiss JL, et al (1994) Rotational deformation of the canine left ventricle measured by magnetic resonance tagging: effects of catecholamines, ischemia,, and pacing. Cardiovasc Res 28:629–635

    PubMed  Google Scholar 

  • Buser PT, Auffermann W, Holt WW et al (1989) Noninvasive evaluation of global left ventricular function with use of cine nuclear magnetic resonance. J Am Coll Cardiol 13:1294–1300

    PubMed  Google Scholar 

  • Caputo GR, Suzuki JI, Kondo C et al (1990) Determination of left ventricular volume and mass with use of biphasic spin-echo MR imaging: comparison with cine MR. Radiology 177:773–777

    PubMed  Google Scholar 

  • Carr JC, Simonetti O, Bundy J et al (2001) Cine MR angiography of the heart with segmented true fast imaging with steady-state precession. Radiology 219:828–834

    PubMed  Google Scholar 

  • Casalino E, Laissy JP, Soyer P, Bouvet E, Vachon F (1996) Assessment of right ventricle function and pulmonary artery circulation by cine MRI in patients with AIDS. Chest 110:1243–1247

    PubMed  Google Scholar 

  • Cerqueira MD, Weissman NJ, Dilsizian V et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. J Cardiovasc Magn Reson 4:203–210

    Article  Google Scholar 

  • Chuang ML, Hibberd MG, Salton CJ (2000) Importance of imaging method over imaging modality in noninvasive determination of left ventricular volumes and ejection fraction. J Am Coll Cardiol 35:477–484

    Article  PubMed  Google Scholar 

  • Cigarroa CG, Filippi C de, Brickner ME, et al (1993) Dobutamine stress echocardiography identifies hibernating myocardium and predicts recovery of left ventricular function after coronary revascularization. Circulation 88:430–436

    PubMed  Google Scholar 

  • Clay SR, Alfakih K, Radjenovic A et al (2004) Normal human left ventricular dimensions using steady state free precession MRI in the radial long-axis orientation (abstract). J Cardiov Magn Reson 6:231

    Google Scholar 

  • Constable RT, Rath KM, Sinusas AJ, Gore JC (1994) Development and evaluation of tracking algorithms for cardiac wall motion analysis using phase velocity MR imaging. Magn Reson Med 32:33–42

    PubMed  Google Scholar 

  • Cottin Y, Touzery C, Guy F et al (1999) MR imaging of the heart in patients after myocardial infarction: effect of increasing intersection gap on measurements of left ventricular volume, ejection fraction and wall thickness. Radiology 213:513–520

    PubMed  Google Scholar 

  • Croisille P, Moore CC, Judd RM et al (1999) Differentiation of viable and nonviable myocardium by the use of three-dimensional tagged MRI in 2-day-old reperfused canine infarcts. Circulation 99:284–291

    PubMed  Google Scholar 

  • Culham J, Vince DJ (1988) Cardiac output by MR imaging: an experimental study comparing right ventricle and left ventricle with thermodilution. J Can Assoc Radiol 39:247–249

    Google Scholar 

  • Debatin JF, Nadel SN, Sostman HD, et al (1992a) Magnetic resonance imaging-cardiac ejection fraction measurements: phantom study comparing four different methods. Invest Radiol 27:198–204

    PubMed  Google Scholar 

  • Debatin JF, Nadel SN, Paolini JF et al (1992b) Cardiac ejection fraction: phantom study comparing cine MR imaging, radionuclide blood pool imaging and ventriculography. J Magn Reson Imaging 2:135–142

    PubMed  Google Scholar 

  • Dilworth LR, Aisen AM, Mancini J, Lande I, Buda AJ (1987) Determination of left ventricular volumes and ejection fraction by nuclear magnetic resonance imaging. Am Heart J 113:24–32

    Article  PubMed  Google Scholar 

  • Dong SJ, Hees PS, Huang WM, et al (1999) Independent effects of preload, afterload, and contractility on left ventricular torsion. Am J Physiol Heart Circ Physiol 277:1053–1060

    Google Scholar 

  • Dong SJ, Hees PS, Siu CO, Weiss JL, Shapiro EP (2001) MRI assessment of LV relaxation by untwisting rate: a new isovolumic phase measure of Ï„. J Cardiovasc Magn Reson 281:2002–2009

    Google Scholar 

  • Dulce MC, Mostbeck GH, Friese KK, Caputo GR, Higgins CB (1993) Quantification of the left ventricular volumes and function with cine MR imaging: comparison of geometric models with three-dimensional data. Radiology 188:371–376

    PubMed  Google Scholar 

  • Fieno DS, Jaffe WC, Simonetti OP, Judd RM, Finn JP (2002) TrueFISP: assessment of accuracy for measurement of left ventricular mass in an animal model. J Magn Reson Imaging 15:526–531

    Article  PubMed  Google Scholar 

  • Firmin DN, Klipstein RH, Hounsfield GL, Paley MP, Long-more DB (1989) Echo-planar high-resolution flow velocity mapping. Magn Reson Med 12:316–327

    PubMed  Google Scholar 

  • Fischer SE, McKinnon GC, Maier SE, Boesiger P (1993) Improved myocardial tagging contrast. Magn Reson Med 30:191–200

    PubMed  Google Scholar 

  • Foo TK, Bernstein MA, Aisen AM, et al (1995) Improved ejection fraction and flow velocity estimates with use of view sharing and uniform repetition time excitation with fast cardiac techniques. Radiology 195:471–478

    PubMed  Google Scholar 

  • Forbat SM, Karwatowski SP, Gatehouse PD, et al (1994) Technical note: rapid measurement of left ventricular mass by spin echo magnetic resonance imaging. Br J Radiol 67:86–90

    PubMed  Google Scholar 

  • Furber A, Balzer P, Cavaro-Menard C et al (1998) Experimental validation of an automated edge-detection method for a simultaneous determination of the endocardial and epicardial borders in short-axis cardiac MR images: application in normal volunteers. J Magn Reson Imaging 8:1006–1014

    PubMed  Google Scholar 

  • Fujita N, Duerinckx AJ, Higgins CB (1993) Variation in left ventricular regional wall stress with cine magnetic resonance imaging: normal subjects versus dilated cardiomyopathy. Am Heart J 125:1337–1345

    Article  PubMed  Google Scholar 

  • Fyrenius A, Wigstrom L, Bolger AF et al (1999) Pitfalls in Doppler evaluation of diastolic function: insights from 3-dimensional magnetic resonance imaging. J Am Soc Echocardiogr 12:817–826

    PubMed  Google Scholar 

  • Galjee MA, Rossum AC van, Eenige MJ van, et al (1995) Magnetic resonance imaging of the pulmonary venous flow pattern in mitral regurgitation. Independence of the investigated vein. Eur Heart J 16:1675–1685

    PubMed  Google Scholar 

  • Germain P, Roul G, Kastler B, et al (1992) Inter-study variability in left ventricular mass measurement. Comparison between M-mode echography and MRI. Eur Heart J 13:1011–1019

    PubMed  Google Scholar 

  • Giorgi B, Matton N, Dymarkowski S, Rademakers FE, Bogaert J (2003) Assessment of ventricular septal motion in patients clinically suspected of constrictive pericarditis, using magnetic resonance imaging. Radiology 228:417–424

    PubMed  Google Scholar 

  • Gopal AS, Keller AM, Rigling R, King DL Jr, King DK (1993) Left ventricular volume and endocardial surface area by three-dimensional echocardiography: comparison with two-dimensional echocardiography and nuclear magnetic resonance imaging in normal subjects. J Am Coll Cardiol 22:258–270

    PubMed  Google Scholar 

  • Goshtasby AA, Turner DA (1996) Fusion of short-axis and long-axis cardiac MR images. Comput Med Imaging Graph 20:77–87

    Article  PubMed  Google Scholar 

  • Greenbaum RA, Ho SY, Gibson DG, Becker AE, Anderson RH (1981) Left ventricular fibre architecture in man. Br Heart J 45:248–263

    PubMed  Google Scholar 

  • Griswold MA, Jakob PM, Chen Q et al (1999) Resolution enhancement in single-shot imaging using simultaneous acquisition of spatial harmonics (SMASH). Magn Reson Med 41:1236–1245

    Article  PubMed  Google Scholar 

  • Grothues F, Moon JC, Bellenger NG, et al (2004) Interstudy reproducibility of right ventricular volumes, function, and mass with cardiovascular magnetic resonance. Am Heart J 147:218–223

    Article  PubMed  Google Scholar 

  • Guzman PA, Maughan WL, Yin FC et al (1981) Transseptal pressure gradient with leftward septal displacement during the Mueller manoeuvre in man. Br Heart J 46:657–662

    PubMed  Google Scholar 

  • Hansen DE, Daughters G, Alderman EL, Ingels NJ, Miller DC (1988) Torsional deformation of the left ventricular midwall in human hearts with intramyocardial markers: regional heterogeneity and sensitivity to the inotropic effects of abrupt rate changes. Circ Res 62:941–952

    PubMed  Google Scholar 

  • Hartnell G, Cerel A, Kamalesh M et al (1994) Detection of myocardial ischemia, value of combined myocardial perfusion and cineangiographic MR imaging. Am J Roentgenol 163:1061–1067

    PubMed  Google Scholar 

  • Hatabu H, Gefter WB, Axel L (1994) MR imaging with spatial modulation of magnetization in the evaluation of chronic central pulmonary thromboemboli. Radiology 190:791–796

    PubMed  Google Scholar 

  • Hatle LK, Appleton CP, Popp RL (1989) Differentiation of constrictive pericarditis and restrictive cardiomyopathy by Doppler echocardiography. Circulation 79:357–370

    PubMed  Google Scholar 

  • Hees PS, Fleg JL, Dong SJ, Shapiro EP (2004) MRI and echocardiographic assessment of the diastolic dysfunctin of normal aging: altered LV pressure decline or load? Am J Physiol Heart Circ Physiol 286:782–788

    Article  Google Scholar 

  • Hendrich K, Xu Y, Kim S, Ugurbil K (1994) Surface coil cardiac tagging and (31)P spectroscopic localization with B-1-insensitive adiabatic pulses. Magn Reson Med 31:541–545

    PubMed  Google Scholar 

  • Herregods M, Paep G de, Bijnens B et al (1994) Determination of left ventricular volume by two-dimensional echocardiography: comparison with magnetic resonance imaging. Eur Heart J 15:1070–1073

    PubMed  Google Scholar 

  • Higgins CB, Caputo G, Wendland MF, Saeed M (1992) Measurement of blood flow and perfusion in the cardiovascular system. Invest Radiol 2:66–71

    Google Scholar 

  • Hoeper MM, Tongers J, Leppert A, et al (2001) Evaluation of right ventricular performance with a right ventricular ejection fraction thermodilution catheter and MRI in patients with pulmonary hypertension. Chest 102:502–507

    Article  Google Scholar 

  • Hori Y, Yamada N, Higashi M, Hirai N, Nakatani S (2003) Rapid evaluation of right and left ventricular function and mass using real-time true-FISP cine MR imaging without breath-hold: comparison with segmented true-FISP cine MR imaging with breath-hold. J Cardiovasc Magn Reson 5:439–450

    Article  PubMed  Google Scholar 

  • Hsu EW, Muzikant AL, Matulevicius SA, Penland RC, Henriquez CS (1998) Magnetic resonance myocardial fiber-orientation mapping with direct histologic correlation. Am J Physiol Heart Circ Physiol 274:1627–1634

    Google Scholar 

  • Hurrell DG, Nishimura RA, Higano ST et al (1996) Value of dynamic respiratory changes in left and right ventricular pressures for the diagnosis of constrictive pericarditis. Circulation 93:2007–2013

    PubMed  Google Scholar 

  • Ibrahim T, Weniger C, Schwaiger M et al (1999) Effect of papillary muscles and trabeculae on left ventricular parameters in cine-magnetic resonance images (MRI) (abstract). J Cardiovasc Magn Reson 1:319

    Google Scholar 

  • Ichikawa Y, Sakuma H, Kitagawa K et al (2003) Evaluation of left ventricular volumes and ejection fraction using fast steady-state cine MR imaging: comparison with left ventricular angiography. J Cardiovasc Magn Reson 5:333–342

    Article  PubMed  Google Scholar 

  • Iwase M, Nagata K, Izawa H (1993) Age-related changes in left and right ventricular filling velocity profiles and their relationship in normal subjects. Am Heart J 126:419–426

    Article  PubMed  Google Scholar 

  • Janz RF (1982) Estimation of local myocardial stress. Am J Physiol Heart Circ Physiol 242:875–881

    Google Scholar 

  • Jarvinen VM, Kupari MM, Hekali PE, Poutanen VP (1994a) Assessment of left atrial volumes and phasic function using cine magnetic resonance imaging in normal subjects. Am J Cardiol 73:1135–1137

    Article  PubMed  Google Scholar 

  • Jarvinen VM, Kupari MM, Hekali PE, Poutanen VP (1994b) Right atrial MR imaging studies of cadaveric atrial casts and comparisons with right and left atrial volumes and function in healthy subjects. Radiology 191:137–142

    PubMed  Google Scholar 

  • Jauhiainen T, Järvinen VM, Hekali PE (2002) Evaluation of methods for MR imaging of human right ventricular heart volumes and mass. Acta Radiol 43:587–592

    Article  PubMed  Google Scholar 

  • Jessup M, Sutton MS, Weber KT, Janicki JS (1987) The effect of chronic pulmonary hypertension on left ventricular size, function, and interventricular septal motion. Am Heart J 113:1114–1122

    Article  PubMed  Google Scholar 

  • Kaji S, Yang PC, Kerr AB et al (2001) Rapid evaluation of left ventricular volume and mass without breath-holding using real-time interactive cardiac magnetic resonance imaging system. J Am Coll Cardiol 38:527–533

    Article  PubMed  Google Scholar 

  • Katz J, Whang J, Boxt LM et al (1993) Estimation of right ventricular mass in normal subjects and in patients with primary pulmonary hypertension by nuclear magnetic resonance imaging. J Am Coll Cardiol 21:1475–1481

    PubMed  Google Scholar 

  • Kaul S, Wismer GL, Brady TJ (1986) Measurement of normal left heart dimensions using optimally oriented MR images. Am J Roentgenol 146:75–79

    Google Scholar 

  • Kilner PJ, Firmin DN, Rees RSO et al (1991) Valve and great vessel stenosis: assessment with MR jet velocity mapping. Radiology 178:229–235

    PubMed  Google Scholar 

  • Klein AL, Cohen GI, Pietrolungo JF et al (1993) Differentiation of constrictive pericarditis from restrictive cardiomyopathy by Doppler transesophageal echocardiographic measurements of respiratory variations in pulmonary venous flow. J Am Coll Cardiol 22:1935–1943

    PubMed  Google Scholar 

  • Kojima S, Yamada N, Goto Y (1999) Diagnosis of constrictive pericarditis by tagged cine magnetic resonance imaging. N Engl J Med 341:373–374

    Article  PubMed  Google Scholar 

  • Kondo C, Caputo GR, Semelka R, et al (1991) Right and left ventricular stroke volume measurements with velocity-encoded cine MR imaging: In vitro and in vivo validation. Am J Roentgenol 157:9–16

    PubMed  Google Scholar 

  • Kozerke S, Scheidegger MB, Pedersen EM, Boesiger P (1999) Heart motion adapted cine phase-contrast flow measurements through the aortic valve. Magn Reson Med 42:970–978

    Article  PubMed  Google Scholar 

  • Kozerke S, Schwitter J, Pedersen EM, Boesiger P (2001) Aortic and mitral regurgitation: quantification using moving slice velocity mapping. J Magn Reson Imaging 14:106–112

    Article  PubMed  Google Scholar 

  • Kroft LJ, Roos A de (1999) Biventricular diastolic cardiac function assessed by MR flow imaging using a single angulation. Acta Radiol 40:563–568

    PubMed  Google Scholar 

  • Kroft LJM, Simons P, Laar JM van, Roos A de (2000) Patients with pulmonary fibrosis: cardiac function assessed with MR imaging. Radiology 216:464–471

    PubMed  Google Scholar 

  • Kudelka AM, Turner DA, Liebson PR, et al (1997) Comparison of cine magnetic resonance imaging and Doppler echocardiography for evaluation of left ventricular diastolic function. Am J Cardiol 80:384–386

    Article  PubMed  Google Scholar 

  • Kuijer JPA, Marcus JT, Götte MJW, Rossum AC van, Heethaar RM (2002) Three-dimensional myocardial strains at end-systole and during diastole in the left ventricle of normal humans. J Cardiovasc Magn Reson 4:341–351

    Article  PubMed  Google Scholar 

  • Lalande A, Legrand L, Walker PM et al (1999) Automatic detection of left ventricular contours from cine magnetic resonance imaging using fuzzy logic. Invest Radiol 34:211–217

    Article  PubMed  Google Scholar 

  • Lamb HJ, Doornbos J, Velde EA van der, et al (1996) Echo planar MRI of the heart on a standard system: validation of measurements of left ventricular function and mass. J Comput Assist Tomogr 20:942–949

    Article  PubMed  Google Scholar 

  • Lauerma K, Harjula A, Jarvinen V, Kupari M, Keto P (1996) Assessment of right and left atrial function in patients with transplanted hearts with the use of magnetic resonance imaging. J Heart Lung Transplant 15:360–367

    PubMed  Google Scholar 

  • Lee VS, Resnick D, Bundy JM, et al (2002) Cardiac function: MR evaluation in one breath hold with real-time true fast imaging with steady-state precession. Radiology 222:835–842

    PubMed  Google Scholar 

  • Legget ME (1999) Usefulness of parameters of left ventricular wall stress and systolic function in the evaluation of patients with aortic stenosis. Echocardiography 16:701–710

    PubMed  Google Scholar 

  • Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP (1990) Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 322:1561–1566

    PubMed  Google Scholar 

  • Lima JA, Guzman PA, Yin FC et al (1986) Septal geometry in the unloaded living human heart. Circulation 74:463–468

    PubMed  Google Scholar 

  • Lima JAC, Jeremy R, Guier W et al (1993) Accurate systolic wall thickening by nuclear magnetic resonance imaging with tissue ragging: correlation with sonomicrometers in normal and ischemic myocardium. J Am Coll Cardiol 21:1741–1751

    PubMed  Google Scholar 

  • Longmore DB, Underwood SR, Hounsfield GN (1985) Dimensional accuracy of magnetic resonance in studies of the heart. Lancet 15:1360–1362

    Article  Google Scholar 

  • Lorenz CH (2000) The range of normal values of cardiovascular structures in infants, children and adolescents measured by magnetic resonance imaging. Pediatr Cardiol 21:37–46

    Article  PubMed  Google Scholar 

  • Lorenz CH, Walker ES, Morgan VL, Klein SS, Graham TP Jr (1999) Normal human right and left ventricular mass, systolic function, and gender differences by cine magnetic resonance imaging. J Cardiovasc Magn Reson 1:7–21

    PubMed  Google Scholar 

  • Lorenz CH, Pastorek JS, Bundy JM (2000) Delineation of normal human left ventricular twist throughout systole by tagged cine magnetic resonance imaging. J Cardiovasc Magn Reson 2:97–108

    PubMed  Google Scholar 

  • Mandinov L, Eberli FR, Seiler C, Hess OM (2000) Diastolic heart failure. Cardiovasc Res 45:813–825

    Article  PubMed  Google Scholar 

  • Marcus JT, Vonk Noordegraaf A, Vries PM de et al (1998) MRI evaluation of right ventricular pressure overload in chronic pulmonary disease. J Magn Reson Imaging 8:999–1005

    PubMed  Google Scholar 

  • Marcus JT, Götte MJW, DeWaal LK et al (1999a) The influence of through-plane motion on left ventricular volumes measured by magnetic resonance imaging: implications for image acquisition and analysis. J Cardiovasc Magn Reson 1:1–6

    PubMed  Google Scholar 

  • Marcus JT, DeWaal LK, Götte MJ,et al (1999b) MRI-derived left ventricular function parameters and mass in healthy young adults: relation with gender and body size. Int J Card Imaging 15:411–419

    Article  PubMed  Google Scholar 

  • Markiewicz W, Sechtem U, Higgins CB (1987a) Evaluation of the right ventricle by magnetic resonance imaging. Am Heart J 113:8–15

    Article  PubMed  Google Scholar 

  • Markiewicz W, Sechtem U, Kirby R, et al (1987b) Measurement of ventricular volumes in the dog by nuclear magnetic resonance imaging. J Am Coll Cardiol 10:170–177

    PubMed  Google Scholar 

  • Matter C, Nagel E, Stuber M, Boesiger P, Hess OM (1996) Assessment of Systolic and diastolic LV function by MR myocardial tagging. Basic Res Cardiol [Suppl 2] 91:23–28

    Article  Google Scholar 

  • Matthaei D, Frahm J, Haase A, Hanicke W (1985) Regional physiological functions depicted by sequences of rapid magnetic resonance images. Lancet 19:893

    Article  Google Scholar 

  • McVeigh ER, Atalar E (1992) Cardiac tagging with breath-hold cine MRI. Magn Reson Med 28:318–327

    PubMed  Google Scholar 

  • McVeigh ER, Zerhouni EA (1991) Noninvasive measurement of transmural gradients in myocardial strain with MR imaging. Radiology 180:677–683

    PubMed  Google Scholar 

  • Miller S, Simonetti OP, Carr J, Kramer U, Finn JP (2002) MR imaging of the heart with cine true fast imaging with steady-state precession: influence of spatial and temporal resolutions on left ventricular functional parameters. Radiology 223:263–269

    PubMed  Google Scholar 

  • Mirsky I, Corin WJ, Murakami T, et al (1988) Correction for preload in assessment of myocardial contractility in aortic and mitral valve disease. Application of the concept of systolic myocardial stiffness. Circulation 78:68–80

    PubMed  Google Scholar 

  • Mogelvang J, Thomsen C, Mehlsen J, et al (1986) Evaluation of left ventricular volumes measured by magnetic resonance imaging. Eur Heart J 7:1016–1021

    PubMed  Google Scholar 

  • Mohiaddin RH, Hasegawa M (1995) Measurement of atrial volumes by magnetic resonance imaging in healthy volunteers and in patients with myocardial infarction. Eur Heart J 16:106–111

    PubMed  Google Scholar 

  • Mohiaddin RH, Wann SL, Underwood R, Firmin DN, Rees S, Longmore DB (1990) Vena caval flow: assessment with cine MR velocity mapping. Radiology 177:537–541

    PubMed  Google Scholar 

  • Mohiaddin RH, Amanuma M, Kilner PJ, et al (1991) MR phase-shift velocity mapping of mitral and pulmonary venous flow. J Comput Assist Tomogr 15:237–243

    PubMed  Google Scholar 

  • Moon JCC, Lorenz CH, Francis JM, Smith GC, Pennell DJ (2002) Breath-hold FLASH and FISP cardiovascular MR imaging: left ventricular volume differences and reproducibility. Radiology 223:789–797

    PubMed  Google Scholar 

  • Moore CC, O’Dell WG, McVeigh ER, Zerhouni EA (1992) Calculation of three-dimensional left ventricular strains from biplanar tagged MR images. J Magn Reson Imaging 2:165–175

    PubMed  Google Scholar 

  • Moore CC, Reeder SB, McVeigh ER (1994) Tagged MR imaging in a deforming phantom: photographic validation. Radiology 190:765–769

    PubMed  Google Scholar 

  • Mostbeck GH, Hartiala JJ, Foster E, et al (1993) Right ventricular diastolic filling: evaluation with velocity-encoded cine MRI. J Comput Assist Tomogr 17:245–252

    PubMed  Google Scholar 

  • Nagel E, Schneider U, Schalla S et al (2000) Magnetic resonance real-time imaging for the evaluation of left ventricular function. J Cardiovasc Magn Reson 2:7–14

    PubMed  Google Scholar 

  • Naito H, Arisawa J, Harada K, et al (1995) Assessment of right ventricular regional contraction and comparison with the left ventricle in normal humans: a cine magnetic resonance study with presaturation myocardial tagging. Br Heart J 74:186–191

    PubMed  Google Scholar 

  • O’Dell WG, Moore CC, Hunter WC, Zerhouni EA, McVeigh ER (1995) Three-dimensional myocardial deformations: calculation with displacement field fitting to tagged MR images. Radiology 195:829–835

    PubMed  Google Scholar 

  • Paelinck BP, Lamb HJ, Bax JJ, Van der Wall EE, Roos A de (2002) Assessment of diastolic function by cardiovascular magnetic resonance. Am Heart J 144:198–205

    Article  PubMed  Google Scholar 

  • Palmon LC, Reichek N, Yeon SB et al (1994) Intramural myocardial shortening in hypertensive left ventricular hypertrophy with normal pump function. Circulation 89:122–131

    PubMed  Google Scholar 

  • Pattynama PM, Doornbos J, Hermans J, Wall EE van der, Roos A de (1992) Magnetic resonance evaluation of regional left ventricular function. Effect of through-plane motion. Invest Radiol 27:681–685

    PubMed  Google Scholar 

  • Pattynama PM, Lamb HJ, Velde EA van der, Wall EE van der, Roos A de (1993) Left ventricular measurements with cine and spin-echo MR imaging: a study of reproducibility with variance component analysis. Radiology 187:261–268

    PubMed  Google Scholar 

  • Pattynama PM, Lamb HJ, Velde EA van der, Geest RJ van der, Wall EE van der, Roos A de (1995) Reproducibility of MRI-derived measurements of right ventricular volumes and myocardial mass. Magn Reson Imaging 13:53–63

    Article  PubMed  Google Scholar 

  • Pennell DJ, Underwood SR, Ell PJ, Swanton RH, Walker JM, Longmore DB (1990) Dipyridamole magnetic resonance imaging: a comparison with thallium-201 emission tomography. Br Heart J 64:362–369

    PubMed  Google Scholar 

  • Pennell DJ, Underwood SR, Manzara CC et al (1992) Magnetic resonance imaging during dobutamine stress in coronary artery disease. Am J Cardiol 70:34–40

    Article  PubMed  Google Scholar 

  • Pennell DJ, Firmin DN, Burger P et al (1995) Assessment of magnetic resonance velocity mapping of global ventricular function during dobutamine infusion in coronary artery disease. Br Heart J 74:163–170

    PubMed  Google Scholar 

  • Perman WH, Creswell LL, Wyers SG, Moulton MJ, Pasque MK (1995) Magnetic resonance imaging during dobutamine stress in coronary artery disease. Am J Cardiol 70:34–40

    Google Scholar 

  • Pipe JG, Boes JL, Chenevert TL (1991) Method for measuring three-dimensional motion with tagged MR imaging. Radiology 181:591–595

    PubMed  Google Scholar 

  • Plein S, Bloomer TN, Ridgway JP, et al (2001) Steady-state free precession magnetic resonance imaging of the heart: comparison with segmented κ-space gradient-echo imaging. J Magn Reson Imaging 14:230–236

    Article  PubMed  Google Scholar 

  • Powell AJ, Tsai-Goodman B, Prakash A, Greil GF, Geva T (2003) Comparison between phase-velocity cine magnetic resonance imaging and invasive oxymetry for quantification of atrial shunts. Am J Cardiol 91:1523–1525

    Article  PubMed  Google Scholar 

  • Rademakers FE, Buchalter MB, Rogers WJ et al (1992) Dissociation between left ventricular untwisting and filling: accentuation by catecholamines. Circulation 85:1572–1581

    PubMed  Google Scholar 

  • Rademakers FE, Rogers WJ, Guier WH et al (1994) Relation of regional cross-fiber shortening to wall thickening in the intact heart. Three-dimensional strain analysis by NMR tagging. Circulation 89:1174–1182

    PubMed  Google Scholar 

  • Rademakers FE, Marchal G, Mortelmans L, Werf F van de, Bogaert J (2003) Evolution of regional performance after an acute anterior myocardial infarction in humans using magnetic resonance tagging. J Physiol (Lond) 546:777–787

    Article  PubMed  Google Scholar 

  • Rajappan K, Livieratos L, Camici PG, Pennell DJ (2002) Measurement of ventricular volumes and function: a comparison of gated PET and cardiovascular magnetic resonance. J Nucl Med 43:806–810

    PubMed  Google Scholar 

  • Robinson TF, Factor SM, Sonnenblick EH (1986) The heart as a suction pump. Sci Am 254:84–91

    PubMed  Google Scholar 

  • Rogers WJ, Shapiro EP, Weiss JL et al (1991) Quantification of and correction for left ventricular systolic long-axis shortening by magnetic resonance tissue tagging and slice isolation. Circulation 84:721–731

    PubMed  Google Scholar 

  • Romiger MB, Bachmann GF, Geuer M et al (1999) Accuracy of right and left ventricular heart volume and left ventricular muscle mass determination with cine MRI in breath holding technique. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 170: 54–60

    PubMed  Google Scholar 

  • Ryf S, Spiegel MA, Gerber M, Boesiger P (2002) Myocardial tagging with 3D-CSPAMM. J Magn Reson Imaging 16:320–325

    Article  PubMed  Google Scholar 

  • Sakuma H, Fujita N, Foo TK et al (1993) Evaluation of left ventricular volume and mass with breath-hold cine MR imaging. Radiology 188:377–380

    PubMed  Google Scholar 

  • Salton CJ, Chuang ML, O’Donnell CJ et al (2002) Gender differences and normal left ventricular anatomy in an adult population free of hypertension. J Am Coll Cardiol 39:1055–1060

    Article  PubMed  Google Scholar 

  • Sandstede J, Lipke C, Beer M, et al (1999) Age-and genders-pecific differences in left and right ventricular cardiac function and mass determined by cine magnetic resonance imaging. Eur Radiol 10:438–442

    Article  Google Scholar 

  • Santaralli MF, Positano V, Michelassi C, Lombardi M, Landini L (2003) Automated cardiac MR image segmentation: theory and measurement segmentation. Med Eng Phys 25:149–159

    Article  PubMed  Google Scholar 

  • Scharhag J, Schneider G, Urhausen A, et al (2002) Athlete’s heart. Right and left ventricular mass and function in male endurance athletes and untrained individuals determined by magnetic resonance imaging. J Am Coll Cardiol 40:1856–1863

    Article  PubMed  Google Scholar 

  • Schulen V, Schick F, Loichat J et al (1996) Evaluation of κ-space segmented cine sequences for fast functional cardiac imaging. Invest Radiol 31:512–522

    Article  PubMed  Google Scholar 

  • Scollan DF, Holmes A, Winslow R, Forder J (1998) Histoogical validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. Am J Physiol Heart Circ Physiol 275:2308–2318

    Google Scholar 

  • Sechtem U, Pflugfelder PW, Gould RG et al (1987) Measurement of right and left ventricular volumes in healthy individuals with cine MR imaging. Radiology 163:697–702

    PubMed  Google Scholar 

  • Semelka RC, Tomei E, Wagner S et al (1990a) Interstudy reproducibility of dimensional and functional measurements between cine magnetic resonance studies in the morphologically abnormal left ventricle. Am Heart J 119:1367–1373

    PubMed  Google Scholar 

  • Semelka RC, Tomei E, Wagner S et al (1990b) Normal left ventricular dimensions and function: interstudy reproducibility of measurements with cine MR imaging. Radiology 174:763–768

    PubMed  Google Scholar 

  • Setser RM, Fischer SE, Lorenz CH (2000) Quantification of left ventricular function with magnetic resonance images acquired in real-time. J Magn Reson Imaging 12:430–438

    Article  PubMed  Google Scholar 

  • Sierra-Galan LM, Ingkanisorn WP, Rhoads KL, Agyeman KO, Arai AE (2003) Qualitative assessment of regional left ventricular can predict MRI or radionuclide ejection fraction: an objective alternative to eyeball estimates. J Cardiovasc Magn Reson 5:451–463

    Article  PubMed  Google Scholar 

  • Singelton HR, Pohost GM (1997) Automatic cardiac MR image segmentation using edge detection by tissue classification in pixel neighborhoods. Magn Reson Med 37:418–424

    PubMed  Google Scholar 

  • Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 38:591–603

    PubMed  Google Scholar 

  • Soldo SJ, Norris SL, Gober JR, et al (1994) MRI-derived ventricular volume curves for the assessment of left ventricular function. Magn Reson Imaging 12:711–717

    Article  PubMed  Google Scholar 

  • Spiegel MA, Luechinger R, Schwitter J, Boesiger P (2003) Ring tag: ring-shaped tagging for myocardial centerline assessment. Invest Radiol 38:669–678

    PubMed  Google Scholar 

  • Spuentrup E, Schroeder J, Mahnken AH et al (2003) Quantitative assessment of left ventricular function with interactive real-time spiral and radial MR imaging. Radiology 227:870–876

    PubMed  Google Scholar 

  • Stillmann AE, Wilke N, Jerosch-Herold M (1997) Use of an intravascular T1 contrast agent to improve MR cine myocardial-blood pool definition in man. J Magn Reson Imaging 7:765–767

    PubMed  Google Scholar 

  • Stratemeier EJ, Thompson R, Brady TJ (1986) Ejection fraction determination by MR imaging: comparison with left ventricular angiography. Radiology 158:775–777

    PubMed  Google Scholar 

  • Streeter DD, Spotnitz HM, Patel DP, Ross J, Sonnenblick EH (1969) Fiber orientation in the canine left ventricle during diastole and systole. Circ Res 24:339–347

    PubMed  Google Scholar 

  • Streeter DD, Vaishnav RN, Patel DJ, et al (1970) Stress distribution in the canine left ventricle during diastole and systole. Biophys J 10:343–363

    Google Scholar 

  • Stuber M, Scheidegger MB, Fischer SE et al (1999) Alterations in the local myocardial motion pattern in patients suffering from pressure overload due to aortic stenosis. Circulation 27:361–368

    Google Scholar 

  • Tardivon AA, Mousseaux E, Brenot F et al (1994) Quantification of hemodynamics in primary pulmonary hypertension with magnetic resonance imaging. Am J Respir Crit Care Med 150:1075–1080

    PubMed  Google Scholar 

  • Thiele H, Nagel E, Paetsch I et al (2001) Functional cardiac MR imaging with steady-state free precession (SSFP) significantly improves endocardial border delineation without contrast agents. J Magn Reson Imaging 14:362–367

    Article  PubMed  Google Scholar 

  • Thiele H, Paetsch I, Schnackenburg B et al (2002) Improved accuracy of quantitative assessment of left ventricular volume and ejection fraction by geometric models with steady-state free precession. J Cardiovasc Magn Reson 4:327–339

    Article  PubMed  Google Scholar 

  • Tseng W-Y I, Reese TG, Weisskoff RM, Brady TJ, Wedeen VJ (2000) Myocardial fiber shortening in humans: initial results of MR imaging. Radiology 216:128–139

    PubMed  Google Scholar 

  • Utz JA, Herfkens RJ, Heinsimer JA et al (1987) Cine MR determination of left ventricular ejection fraction. AJR Am J Roentgenol 148:839–843

    PubMed  Google Scholar 

  • Van den Hout RJ, Lamb HJ, Aardweg JG van den et al (2003) Real-time MR imaging of aortic flow: influence of breathing on left ventricular stroke volume in chronic obstructive pulmonary disease. Radiology 229:513–519

    PubMed  Google Scholar 

  • Van der Geest RJ, Buller VG, Jansen E et al (1997) Comparison between manual and semiautomated analysis of left ventricular volume parameters from short-axis MR images. J Comput Assist Tomogr 21:756–765

    Article  PubMed  Google Scholar 

  • Van Rossum AC, Visser FC, Sprenger M,et al (1988a) Evaluation of magnetic resonance imaging for determination of left ventricular ejection fraction and comparison with angiography. Am J Cardiol 15:628–633

    Article  Google Scholar 

  • Van Rossum AC, Visser FC, Eenige MJ van, Valk J, Roos JP (1988b) Magnetic resonance imaging of the heart for determination of ejection fraction. Int J Cardiol 18:53–63

    Article  PubMed  Google Scholar 

  • Van Rugge FP, Holman ER, Wall EE van der, et al (1993a) Quantitation of global and regional left ventricular function by cine magnetic resonance imaging during dobutamine stress in normal human subjects. Eur Heart J 14:456–463

    PubMed  Google Scholar 

  • Van Rugge FP, van der Wall EE, de Roos A, Bruschke AVG (1993b) Dobutamine stress magnetic resonance imaging for detection of coronary artery disease. J Am Coll Cardiol 22:431–439

    PubMed  Google Scholar 

  • Van Rugge FP, Wall EE van der, Spanjersberg SJ et al (1994) Magnetic resonance imaging during dobutamine stress for detection and localization of coronary artery disease: quantitative wall motion analysis using a modification of the centerline method. Circulation 90:127–138

    PubMed  Google Scholar 

  • Waldman LK, Fung YC, Covell JW (1985) Transmural myocardial deformation in the canine left ventricle. Normal in vivo three-dimensional finite strains. Circ Res 57:152–163

    PubMed  Google Scholar 

  • Waldman LK, Nosan D, Villarreal F, Covell JW (1988) Relation between transmural deformation and local myofiber direction in canine left ventricle. Circ Res 63:550–562

    PubMed  Google Scholar 

  • Wedeen VJ (1992) Magnetic resonance imaging of myocardial kinematics. Technique to detect, localize, and quantify the strain rates of the active human myocardium. Magn Reson Med 27:52–67

    PubMed  Google Scholar 

  • Wedeen VJ, Weisskoff RM, Reese TG et al (1995) Motionless movies of myocardial strain-rates using stimulated echoes (erratum in Magn Reson Med 1995, 33:743). Magn Reson Med 33:401–408

    PubMed  Google Scholar 

  • Weiger M, Pruessmann KP, Boesiger P (2000) Cardiac real-time imaging using SENSE: sensitivity encoding scheme. Magn Reson Med 43:177–184

    Article  PubMed  Google Scholar 

  • Weyman AE, Wann S, Feigenbaum H, Dillon JC (1976) Mechanism of abnormal septal motion in patients with right ventricular volume overload: a cross-sectional echocardiographic study. Circulation 54:179–186

    PubMed  Google Scholar 

  • Weyman AE, Heger JJ, Kronik TG, et al (1977) Mechanism of paradoxical early diastolic septal motion in patients with mitral stenosis: a cross-sectional echocardiographic study. Am J Cardiol 40:691–699

    Article  PubMed  Google Scholar 

  • Wong AYK, Rautaharju PM (1968) Stress distribution within the left ventricular wall approximated as a thick ellipsoidal shell. Am Heart J 75:649–662

    Article  PubMed  Google Scholar 

  • Yamaoka O, Yabe T, Okada M et al (1993) Evaluation of left ventricular mass: comparison of ultrafast computed tomography, magnetic resonance imaging, and contrast left ventriculography. Am Heart J 126:1372–1379

    Article  PubMed  Google Scholar 

  • Yim PJ, Ha B, Ferreiro JI et al (1998) Diastolic shape of the right ventricle of the heart. Anat Rec 250:316–324

    Article  PubMed  Google Scholar 

  • Young AA, Axel L (1992) Three-dimensional motion and deformation of the heart wall: estimation with spatial modulation of magnetization — a model-based approach. Radiology 185:241–247

    PubMed  Google Scholar 

  • Young AA, Axel L, Dougherty L, Bogen DK, Parenteau CS (1993) Validation of tagging with MR imaging to estimate material deformation. Radiology 188:101–108

    PubMed  Google Scholar 

  • Young AA, Kramer CM, Ferrari VA, Axel L, Reichek N (1994) Three-dimensional left ventricular deformation in hypertrophic cardiomyopathy. Circulation 90:854–867

    PubMed  Google Scholar 

  • Young AA, Cowan BR, Thrupp SF, Hedley WJ, Dell’Italia LJ (2000) Left ventricular mass and volume: fast point calculation with guide-point modeling on MR images. Radiology 216:597–602

    PubMed  Google Scholar 

  • Zerhouni EA, Parish DM, Rogers WJ, Yang A, Shapiro EP (1988) Human heart: tagging with MR imaging — a new method for noninvasive assessment of myocardial motion. Radiology 169:59–63

    PubMed  Google Scholar 

  • Zile MR, Brutsaert DL (2002) New concepts in diastolic dysfunction and diastolic heart failure. 1. Diagnosis, prognosis and measurements of diastolic function. Circulation 105:1387–1393

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bogaert, J. (2005). Cardiac Function. In: Bogaert, J., Dymarkowski, S., Taylor, A.M. (eds) Clinical Cardiac MRI. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26997-5_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-26997-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40170-4

  • Online ISBN: 978-3-540-26997-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics